
 Appendix B
RTP Protocol Reference

B.1 RTP Protocol

B.1.1 Introduction

This document defines the REF TEK Protocol (RTP). RTP is
designed to provide the application with a full-duplex,
packet-oriented, reliable, transport over UDP network con-
nections. The reader is assumed to have a working under-
standing of the TCP/IP protocol suite and networking
concepts in general.

RTP is typically used in server-client fashion although this is
by no means required. Typically there will by a server appli-
cation running on a IP host somewhere on the network. Cli-
ents will attach themselves to the server to send and receive
data. The client is typically an embedded system that
attaches to the network through an asynchronous serial
interface using Point-to-Point protocol however
other interfaces will be implemented in the future. The
server is typically an application program running on a host
and accesses the network via UDP sockets provided by the IP
stack on the local operating system.

The first implementation of RTP was on the RT422C Asyn-
chronous Communications Card for the REF TEK 72A series
Data Acquisition Systems (DAS) and the server application
RTPD. RTPD and its associated software run on Windows
98, NT, 2000, XP ,Linux, and Solaris (Intel and Sparc).
Throughout this document we will cover some of the details
of this implementation and use it to illustrate various design
concepts.
RTP Protocol Doc-RTP-F B-85

RTP Protocol
B.1.2 Design Goals

The following were the goals of the design for RTP:

1. Entirely platform independent
All data values are stored in network byte order. Can be Imple-
mented on any hardware platform or OS that provides an IP
protocol stack.

2. Encapsulate the application data completely
Not have any dependency on the contents of any particular
application data packet. That is to say that the protocol will be
completely unaware of what it is transporting to the peer. The
only requirement placed on the application is that the data
packet be 1024 bytes or less in size.

3. Self-contained and self-configuring at the client
The protocol stack must discover or be assigned all necessary
parameters to operate from the network. No configuration
information will be stored by embedded implementations nor
will any higher level application configure or control it. The
higher level application simply submits data packets to be sent
as they are ready and will always be willing to receive data.
However, the higher level application must respond to flow con-
trol from RTP to avoid loss of data.

4. Both the server and client must initiate the connec-
tion on-demand
When the application has data to send the connection will be
established if needed simply by submitting the data packet to
be sent. If the connection is down, both must respond to link
establishment by the peer at all times. There does not need to
be an administratively opened or closed state, it is always
administratively open.

5. Recover from loss of connection without data loss
If a client is sending data to the server and the connection is
lost momentarily, it will reestablish the link and resume sending
data. No data may be lost or passed on out of order by the
server. Momentary loss of connection will mean less than five
minutes for purposes of the protocol.

6. Deal with long, thin, pipes effectively
It must be capable of high utilization (>90%) of slow (9.6k),
high latency (>1 second), connections such as VSAT links. We
will use deep queues (16 slots) and adaptive retransmission
time-out to achieve this goal.

7. Small and relatively simple implementation
It must be suitable for embedding in dedicated communications
hardware for REF TEK recording systems.
B-86 RTP Protocol Doc-RTP-F

RTP Protocol
8. Function at the application layer
Uses the standard UDP Sockets API on the server system. All
network traffic will be UDP datagram to/from the REF TEK port
number, port 2543. This port is the well-known REF TEK port
and is registered with the Internet Assigned Numbers Authority
(IANA) for use with both UDP and TCP. UDP broadcasts will be
used only during link establishment and will not be sent more
frequently than one packet every ten seconds per client.

B.1.3 Example Application

Throughout this document we will use the example system shown
in Figure B - 1 to illustrate the details of RTP.

Figure B - 1 The example network

This setup consists of two class C networks interconnected by a
router. The client is on one network (192.168.2) and connects to
the router through an asynchronous serial interface using PPP. The
server is on the other network (192.168.1). The router routes traf-
fic between the between the two networks.

The DAS sends its recording format data to the server as it is
acquired. The server sends command format packets to the DAS
and receives responses as data packets.

Server
RTPD

.2 192.168.1.0 Network
Ethernet

.1

Ethernet 0Cisco 2509 Router

Async 1-8
REF TEK DAS

Modem Modem 192.168.2.0 Network

.1.2
B-87

RTP Protocol
Figure B - 1 on page B-87 and Figure B - 2 show a schematic rep-
resentation of the example network.

Figure B - 2 Layers vs. interfaces in the example network

Data from the DAS flows down through the stack to the interface at
the bottom and across the wire to the router. The router forwards
the packet to its Ethernet interface and on to the server. It then
flows up through the stack at the server to the application.

La
ye

rs

Application

Transport

Network

Data Link

Media

DAS

RTP

UDP

IP

PPP

ASYNC

IP

IEEE 802

Ethernet0ASYNC1

PPP

.1 .1 .2

2543

.2

RTP

UDP

IP

IEEE 802

Ethernet
Bytes

Frames

Datagrams

Bytes

Frames

Datagrams

UDP Datagrams

RTP Packets

Recording Format Data and Commands

.2

2543

Server

RTPD
192.168.1.0 Network192.168.2.0 Network

Modem Modem
Interfaces

Note: In a router packets only come up the stack to the network layer and are
routed. At the transport layer and above, the client views the connection from
end-to-end and is unaware of any routing or interface issues. From the network
layer down, only the next-hop host is visible and at the network layer all
forwarding issues are dealt with.
B-88 RTP Protocol Doc-RTP-F

RTP Encapsulation
B.2 RTP Encapsulation

Application data is encapsulated by RTP for transport across the
network and de-capsulated upon arrival. This is accomplished by
prep ending an eight byte packet header, that contains the addi-
tional data required by the protocol to perform error-correction and
various control functions, to the data packet.

The RTP header has the following form:

All values in any RTP packet are stored in network byte order.
When transmitted on the network, bytes are sent from bit 0 to bit
7, multi-byte values are sent LSB first, MSB last. This is also know
as big-endian byte order and is the same as specified for the entire
TCP/IP protocol family.

The RTP packet is further encapsulated within a UDP datagram as
it passes through the transport layer on its way down the protocol
stack. All UDP encapsulated RTP packets will typically be sent to
and received from the well-known REF TEK port number 2543.
However, the server may serve clients on ephemeral ports if so
desired.

B.2.1 RTP Protocol Field

The Protocol field is used to identify the contents of this UDP data-
gram as a RTP packet. The RTP protocol number is 0x4023. An
early version of RTP was implemented at the network layer directly
on top of PPP at the data link layer for use over dedicated asyn-
chronous serial links (RT422A and B). The 0x4023 protocol was
registered as a PPP protocol number with IANA at that time. We
have used the same value here simply because we already have
this number and it will serve this purpose adequately.

0 1 2 3

0 Protocol (0x4023) Code Sequence #

4 Unit ID (0000-9999) Length

8 Data…
B-89

RTP Encapsulation
B.2.2 RTP Packet Codes

The Code field is an 8 bit unsigned integer that is used to identify
the type of RTP packet. Up to 256 types of packets may be used
by RTP.

There are currently nine different packet types that fall into three
classes:

1. Data packets used to transport data over the connection
to the peer.

2. Server Discovery packets used by a client to find a server.
3. Synchronization packets used to synchronize the

sequence numbers used at each end of the connection for
error-correction.

Table 1 on page 90 lists the types of packets currently defined for
RTP.

All codes not listed in Table 1 on page 90 are reserved for future
use. Note that as defined, bit 0 of the code field may be interpreted
as the “ack bit”, bit 1 as the “unconditional bit”, bit 2 as the “sync
bit”, and bit 3 as the “discovery bit”.

The three classes of packets can be easily distinguished by check-
ing bits 2 and 3 of the code field. If bit 2 is set, this is a synchroni-
zation packet, bit 3 indicates a server discovery packet, otherwise
it is data.

TABLE 1. Currently defined RTP Codes

Code
Binary
code Name Description

0x0 00000000 Data Application data (payload).

0x01 00000001 DataAck Data acknowledgement, data packet accepted by
peer

0x04 00000100 Sync Synchronize outbound sequence number.

0x05 00000101 SyncAck Acknowledgement of sequence number.

0x06 00000110 USync Unconditional synchronize.

0x07 00000111 USyncAck Acknowledgement of unconditional synchronize.

0x08 00001000 SvrInquiry Server discovery inquiry.

0x09 00001001 InquireAc Server acknowledgement.

0x0B 00001011 InquireNak Server negative acknowledgement.
B-90 RTP Protocol Doc-RTP-F

RTP Encapsulation
B.2.3 RTP Sequence Numbers

The Sequence Number field is an 8 bit unsigned integer that is
used to correct transmission errors. The value of this field ranges
from 0 to 255.

As each data packet is sent, the sequence number increments. The
receiving end generates an acknowledgment packet for each
packet that is accepted with the same sequence number and sends
it back to the sender. The sender then knows that packet has been
successfully transported to the peer.

The sequence number is used by the receiver to reorder packets,
detect duplicate packets, and detect old packets. More details
about data transfer can be found in RTP Data Transfer below.

B.2.4 RTP Unit ID Field

The Unit ID field is a 16 bit unsigned integer that identifies the
application at the peer. In the case of the RT422C card, this is the
DAS unit ID number. However, the purpose of this number is to
identify the peer at the opposite end of the connection, which is not
necessarily a DAS. This field should be thought of as a peer, or con-
nection, number.

B.2.5 RTP Length Field

The length field is a 16 bit unsigned integer number of bytes in the
RTP packet including the RTP header. This means that if there are
0 data bytes, the length field will be set to 8.
B-91

RTP Operation
B.3 RTP Operation

In order for a client to move data across the network to a server, it
must connect to the network, discover the address of the server,
and then synchronize sequence numbers.

In order to accomplish this, RTP goes through several distinct
phases.

1. Down, the link is not available for data transfer.
2. Server Discovery, the client is looking for the server.
3. Synchronization, client and server are synchronizing

sequence numbers.
4. Up, the link is available for data transfer.
5. If a server wishes to connect to a client, it must syn-

chronize but it will not need to discover the client’s
address, so the discovery phase is simply skipped.

B.3.1 Phase Diagram

Figure B - 3 on page B-92 shows the relationships between these
phases.

Figure B - 3 RTP connection phases

B.3.2 Down

While RTP is in the Down phase, the connection is not available for
data transfer. The connection begins and ends in this phase.

One of two events signals that the connection should be estab-
lished. If the application submits a data packet for transfer, the
lower layers are opened if necessary, and RTP proceeds to the
Server Discovery phase. Clients will also respond an incoming con-
nection, that is, the transport layer signals an Up event. Servers
are generally always connected to the network and respond to
Server Inquiry packets to establish inbound connections.

Down Server
Discovery

SynchronizationUp

Fail

Fail

Success

Success

Up

Down
B-92 RTP Protocol Doc-RTP-F

RTP Operation
B.3.3 Server Discovery

This is the only aspect of RTP that follows a client-server model
and allows a client to discover its server. This mechanism meets
the self-configuration requirements put forth in the design goals
above.

Clients must discovery the IP address and port number (the end-
point) that the server will use to service its connection. Once con-
nected to the network, the client periodically sends Server Inquiry
packets containing the endpoint as subnet-directed broadcasts to
the well-known REF TEK port. If the client has never been con-
nected, the endpoint is 0.0.0.0:2543, if it has, it is the endpoint
last used. The server listens for these broadcasts and responds
with a InquireAck if the endpoint is correct or a InquireNak that
contains the endpoint that it desires.

Once the client receives as InquireAck from the server, it proceeds
to the Synchronize phase.

Servers simply skip this entire phase and proceed directly to the
Synchronize phase. The server must always accept and respond to
Discovery packets that it receives.

B.3.4 Synchronize

In order to perform error-correction, each end of the connection
must notify the other of the sequence number of the next Data
packet that it will send and receive acknowledgement. This can be
accomplished by a finite-state automaton and is covered in detail
below.

Note that there are two synchronize packets defined, Sync, and
USync. The normal Sync, sometimes referred to as a warm Sync
indicates that there has been a previous connection and we are
attempting to resume that connection. The unconditional or USync,
sometimes referred to as a cold Sync indicates that the sender has
never been connected and that the receiver should not attempt to
resume any connection.

Once an Ack, either SyncAck, or USyncAck, has been both sent
and received, RTP proceeds to the Up phase. While in the Synchro-
nize phase, no Data class packets are allowed to be transferred.
Any Data class packets received are silently discarded.

B.3.5 Up

While RTP is in the Up phase, data may flow across the connection.
All types of RTP packets are allowed and data moves across the
connection error-free.
B-93

RTP Server Discovery
B.4 RTP Server Discovery

Server Discovery is a mechanism used by RTP clients to discover
the IP address and UDP port number that the server will use to ser-
vice its connection. This mechanism is the only aspect of RTP that
employs the client-server model.

RTP servers must listen on UDP port 2543, the well-known REF
TEK port, for RTP Server Inquiry packets from clients. Clients
send these packets as subnet-directed broadcasts. These packets
carry as data the endpoint that will be used by the RTP server to
service the connection.

B.4.1 The Discovery Process

After a client has successfully attached to the network (an Up from
the transport layer), it begins periodically (typically every ten sec-
onds) broadcast a Server Inquiry packet to the REF TEK port.
This will continue until successful discovery is achieved or the net-
work connection goes down.

When a server receives a Server Inquiry packet, it examines the
contents of the packet, specifically the Unit ID, and endpoint, and
either reactivates a previous connection for the Unit or establishes
a new connection for the Unit. If the connection is reestablished,
the server can simply send an InquireAck to the peer. If a new con-
nection is being activated, the server sends an InquireNak to the
peer that contains the endpoint that the client must use to commu-
nicate with the server. Note that the server should unicast the Ack
packet to the source endpoint of the Server Inquiry packet.

When a client receives an InquireAck from a server, it simply uses
the endpoint within the packet and proceeds to the Synchronize
phase. When a client receives an InquireNak from a server, it
broadcasts a new Server Inquiry packet containing the new end-
point and the process continues.

A client will not leave the Discovery phase until it receives an
InquireAck or the transport layer signals a down event. This mech-
anism ensures that the server and the client agree on the server’s
endpoint. If a packet is lost during this process it will still result in
successful discovery.
B-94 RTP Protocol Doc-RTP-F

RTP Server Discovery
B.4.2 Network Issues

Because the client broadcasts Server Inquiry packets, there can
be problems in your network caused by routers not forwarding
these packets to other networks. It is required that the server be
visible to the client through subnet-directed broadcasts in order for
the server discovery process to succeed.

If the server and client both reside on the same network, this is not
an issue. However, in the real world, this may not be the case. In
the case of our example system (see Figure B - 1 on page B-87),
the server is on the other side of a router and measures must be
taken to insure that the discovery process can succeed.

Given this information, routers generally can be configured to allow
limited forwarding of these broadcasts. In our example, the router
is configured to forward only UDP packets destined for port 2543 to
the subnet-directed broadcast address (192.168.1.255) of the
other network and this solves the problem. The responses from the
server are unicast back to the client and need no special attention.

Most routers provide this ability because various protocols, such as
BOOTP, must provide this same type of functionality by employing
UDP broadcasts.

See the section below for the configuration of a Cisco 25xx router
that handles the issues in the example network.

Note: the following aspects of the Server Inquiry packet:

[1] They are always a subnet-directed broadcast. In our example, a class C network,
they are sent to 192.168.2.255.

[2] They are always a UDP packet broadcast to the well-known Ref Tek port (2543).
B-95

RTP Server Discovery
B.4.3 Discovery Class Packets

The three packets used in the server discovery process in detail are:

1. ServerInquiry - packet is sent as a subnet-directed UDP
broadcast to the well-known REF TEK port (2543). The
endpoint of the server is carried in the packet as six bytes
of data. It is used by the client to query the server as to
the server endpoint to use for the RTP connection.

0 1 2 3

0 Protocol (0x4023) Code Sequence #

4 Unit ID (0000-9999) Length

8 Server IP Address

12 Port #

Label Description

Code: 0x08 (SvrInquiry)

Unit ID: The unit ID of the client. The server will use this to identify the client.

Length: 14

Server IP
Address:

32 bit unsigned integer IP address of the server. If unknown, 0.0.0.0,
otherwise, the address last used for the RTP connection.

Port #: 16 bit unsigned port number of server. If unknown, 2543 (0x09EF),
otherwise, the UDP port last used for the RTP connection.

Note: The sequence numbers used for Discovery and Synchronize class packets
should be distinct from that used for Data class packets. During the discovery
phase, the sequence number is simply used to match inquiries with responds.
The client must increment the sequence number each time it sends a SvrInquiry
packet.
B-96 RTP Protocol Doc-RTP-F

RTP Server Discovery
The server must use the same sequence number in its response,
either InquireAck, or InquireNak.
2. InquireAck - packet is a positive server response to a SvrIn-

quiry packet from a client. It is used to confirm the server
endpoint to be used by the client for the RTP connection.

The sequence number is the sequence number of the inquiry
packet for which this packet is the response. Together, the Server
IP Address and Port number make up the server endpoint to be
used by the client for the RTP connection.
3.InquireNak - packet is a negative server response to a

SvrInquiry packet from a client. It is used to communicate
to the client the server endpoint that must be used for the
RTP connection.

The sequence number is the sequence number of the inquiry
packet for which this packet is the response. Together, the Server
IP Address and Port number make up the server endpoint to be
used by the client for the RTP connection.

0 1 2 3

0 Protocol (0x4023) Code Sequence #

4 Unit ID (0000-9999) Length

8 Server IP Address

12 Port #

Label Description

Code: 0x09 (InquireAck)

Unit ID: The unit ID of the client. The server will use this to identify the cli-
ent.

Length: 14

Server IP
Address:

32 bit unsigned integer IP address of the server.

Port #: 16 bit unsigned port number of server.

0 1 2 3

0 Protocol (0x4023) Code Sequence
#

4 Unit ID (0000-9999) Length

8 Server IP Address

12 Port #

Label Description

Code: 0x0B (InquireNak)

Unit ID: The unit ID of the client. The server will use this to identify the cli-
ent.

Length: 14

Server IP
Address:

32 bit unsigned integer IP address of the server.

Port #: 16 bit unsigned port number of server.
B-97

RTP Link Synchronization
B.5 RTP Link Synchronization

RTP link synchronization is a process whereby an RTP implementa-
tion notifies its peer of its outbound sequence number. Each end of
an RTP connection maintains two sequence numbers, they are the
inbound and outbound sequence numbers. Each end is only
responsible for synchronizing the outbound sequence number with
the peer.

The process is complete when each end has both sent and received
an acknowledgment packet from the peer. A finite-state-automaton
(FSA) is provided that will accomplish this process.

During the synchronization process, the outbound sequence num-
ber is the number of the first data packet that will be sent to the
peer. The inbound sequence number is the number of the next
packet that will be forwarded to the application by RTP.

B.5.1 Synchronization Class Packets

There are four synchronization class packets. They are presented
in detail below. None of these packets carry data, that is, there is
no additional data beyond the RTP header.

The four synchronization packets are:

1. Sync - packet is used to inform the peer of the sequence
number that will be used on the next data packet that it
will receive. This is a “normal” Sync, this means there was
a previous connection to the peer and that the peer
should check to see if the sequence number falls within its
inbound sequence space. If it does, the connection is
resumed, otherwise the action is the same as for USync
(see below).

0 1 2 3

0 Protocol (0x4023) Code Sequence #

4 Unit ID (0000-9999) Length

Label Description

Code: 0x04 (Sync)

Sequence: Local outbound sequence number.

Unit ID: The unit ID of local RTP.
Length: 8
B-98 RTP Protocol Doc-RTP-F

RTP Link Synchronization
2. SyncAck - packet is used to acknowledge a Sync packet
received from the peer. The packet can be created by sim-
ply copying the received Sync, changing its code to Syn-
cAck, and reflecting it back to the peer.

3. USync - or unconditional synchronize packet, is used to
inform the peer that it has never been successfully con-
nected to the peer and has no out-of-order data in its out-
bound queue. The peer must flush any pending out-of-
order data that might be in its inbound queue and set its
inbound sequence number.

4. USyncAck - packet is used to acknowledge a USync
packet received from the peer. The packet can be created
by simply copying the received USync, changing its code
to SyncAck, and reflecting it back to the peer.

0 1 2 3

0 Protocol (0x4023) Code Sequence #

4 Unit ID (0000-9999) Length

Label Description

Code: 0x05 (SyncAck)

Sequence: Peer’s outbound sequence number.

Unit ID: The unit ID of the peer RTP.
Length: 8

0 1 2 3

0 Protocol (0x4023) Code Sequence #

4 Unit ID (0000-9999) Length

Label Description

Code: 0x06 (USync)

Sequence: Local outbound sequence number.

Unit ID: The unit ID of local RTP.
Length: 8

0 1 2 3

0 Protocol (0x4023) Code Sequence #

4 Unit ID (0000-9999) Length

Label Description

Code: 0x07 (USyncAck)

Sequence: Peer’s outbound sequence number.

Unit ID: The unit ID of the peer RTP.
Length: 8
B-99

RTP Link Synchronization
B.5.2 The Link Synchronization Automaton

Here is presented a finite-state-automaton (FSA) that will drive
the link synchronization process.

The FSA is defined by events, actions, and state transitions.
Events include: reception of external signals such as open and
close commands and signals from lower layers, reception of RTP
synchronization class packets, and the expiration of the restart
timer. Actions include: communicating with the lower layers and
transmitting packets to the peer.

The following table summarizes the events handled and actions
taken by the automaton.

TABLE 2. FSA events and actions

Actions: Events:

tls This layer start. Up Lower layer is up.

tlf This layer finished. Down Lower layer is down.

tlu This layer up. Open Open the connection.

tld This layer down. Close Close the connection.

irc Initialize restart counter. TO+ Time-out with restart counter
> 0.

ssp Send synchronize packet. TO- Time-out with restart counter
= 0.

sap Send sync acknowledge packet. RSP Received synchronize packet.

RAP Received sync acknowledge
packet.
B-100 RTP Protocol Doc-RTP-F

RTP Link Synchronization
B.5.3 State Transition Table

The complete state transition table follows. States are indicated
horizontally and events are read vertically. State transitions and
actions are represented in the form action/next-state. Multiple
actions are separated by commas and may continue on the next
line. The dash indicates an illegal action.

TABLE 3. Complete FSA state transition table

The states in which the restart timer is running are identified by
the presence of the TO events.

If the link has never been in the Opened state (it is “cold”), uncon-
ditional Syncs and Sync Acks (USync, USyncAck) are sent to the
peer, otherwise regular Syncs and SyncAcks are sent.

The Closed state (0) differs from the Stopped state (1) only in that
the link is dropped (tlf) before the transition to Closed. In either
state an incoming connect brings this layer up. This allows the
application to use the Open and Close events as initiate and drop
the link commands respectively. The automaton is in the Closed
state only when the application commands it. It is in the stopped
state due some external factor such as loss of carrier.

Events/
state 0-Closed 1-Stopped 2-Sync-sent 3-Ack-rcvd 4-Ack-sent 5-Opened

Up irc, ssp/2 irc, ssp/2 – – – –

Down 1 1 1 1 1 tld/1

Open tls/1 tls/1 2 3 4 tld, irc,
ssp/2

Close tlf/0 tlf/0 tlf/0 tlf/0 tlf/0 tld, tlf/0

TO+ – – ssp/2 ssp/2 ssp/4 –

TO - – – tld, tlf/1 tld, tlf/1 tld, tlf/1 –

RSP – irc, ssp,
sap/4

sap/4 sap, tlu/5 sap/4 tld, ssp,
sap/4

RAP – irc, ssp/2 irc/3 ssp/2 irc, tlu/5 tld, irc,
ssp/2
B-101

RTP Link Synchronization
B.5.4 States

The following is a brief description of each FSA state.

State Description

Closed (0) In this state, RTP has not been initialized and the transport layer is not
up. No packets can be sent or received in this state. An RTP implemen-
tation should issue an open event as soon as possible at startup. The
restart timer is not running.

Stopped (1) In this state the transport layer is not up. The FSA will begin to synchro-
nize the link when the transport layer signals an Up event. An Open
event will cause the start action to initiate the connection. The restart
timer is not running.

Sync-sent (2) In this state a Sync (or USync) has been sent to the peer but a SyncAck
(or USyncAck) has not been received. The restart timer is running and
the Sync packet will be sent again upon its expiration.

Ack-rcvd (3) In this state a Sync has been sent to and a SyncAck has been received
from the peer. However, no Sync has been received and no Sync-Ack
has been sent. The restart timer is running and the Sync packet will be
sent again upon its expiration.

Ack-sent (4) In this state a Sync and a SyncAck have been sent to the peer. No Syn-
cAck has been received. The restart timer is running and the Sync will be
sent again if it expires.

Opened (5) In this state a SyncAck has been both sent to and received from the
peer. The connection is now synchronized and ready to transfer data.
The RTP connection is Up and the restart timer is not running.
B-102 RTP Protocol Doc-RTP-F

RTP Link Synchronization
 B.5.5 Events

FSA actions and state transitions are caused by events. The follow-
ing is a brief summary of the events handled by the FSA.

Event Description

Up This event comes from the transport layer to indicate that the
network will now accept traffic. On clients, this event is inter-
cepted to initiate the server discovery process and upon suc-
cessful completion is then sent to the FSA to cause the link to
synchronize.

Down This event comes from the transport layer to indicate that the
connection to the network is down and unavailable for traffic.
This causes the FSA to transition to the Stopped state.

Open This event comes from the application and indicates that it
desires to send data across the link. If the transport layer is not
up, it causes action to initiate the connection to the network. If
the FSA is already opened, this event causes re synchroniza-
tion.

Close This event comes from the application and indicates that the
connection should be dropped. The connection to the network is
broken and the FSA transitions to the Closed state.

Time-out TO+,TO- These events occur when the restart timer expires. The restart
timer is used to time the response to Sync packets.

The TO+ event indicates that the restart timer expired with the
restart counter greater than zero. The restart is decremented
and the packet is retransmitted.

The TO- event indicates that the restart timer expired with the
restart counter equal to zero. The link is recycled, that is, the
connection to the network is dropped, then reestablished. Note
that this causes server discovery to happen again before syn-
chronization.

Received Sync Packet
(RSP)

This event occurs when a Sync (or USync) packet is received
from the peer. If the packet is a Sync, the sequence number
within the packet is check against the inbound sequence space,
if it is within the space, it is simply Ack’ed. If not, it is treated as
a USync.

If the packet is a USync, the inbound queue is flushed and the
inbound sequence number is set to the sequence number within
the USync packet. Because this informs the us that the peer is
“cold”, this forces the local system to be “cold” as well. The
local outbound queue must be examined for non-contiguous
packets.

If any are found, they must be discarded and the outbound
sequence number must be set to the oldest contiguous packet
in the outbound queue and a USync must be transmitted.

Received SyncAck
packet (RAP)

This event occurs when a SyncAck (or USyncAck) is received
from the peer. If the sequence number in the packet doesn’t
match that of the last transmitted Sync (or USync) the packet
must be discarded.
B-103

RTP Link Synchronization
B.5.6 Actions

Actions are taken by the automaton as events occur. The following
is a brief description of the various actions that may be taken by
the FSA.

 -
 B.5.7 Counters and Timers

The RTP FSA makes use of one counter, the restart counter, and
one timer, the restart timer. The restart counter is decremented
each time that as Sync or USync packet is sent. Expiration of the
restart timer causes the TO events that cause retransmission of
these packets.

By default the restart timer should be set to six (6) seconds and
the restart counter should be set to 10.

Action Descriptions

Illegal Action
(–)

This is an action that should never occur in a properly implemented
automaton. This indicates an internal error that needs to be corrected.

This Layer
Start (tls)

This action causes initiation of the connection to the network. Usually
this simply causes an Open event to the transport layer which in turn
opens the layers on down the stack.

This Layer Up
(tlu)

This action occurs as the synchronization process is successfully com-
pleted and is used to perform whatever task is required at that point.
This is the last action taken as the connection comes opened and may
be used to notify the application the RTP connection is now ready for
traffic.

This Layer
Down (tld)

This action occurs when the connection is no longer ready to carry data
traffic. It is the first action taken as RTP leaves the Up phase and can
be used to notify the application that the connection is down.

This Layer Fin-
ished (tlf)

This action causes disconnection from the network. This is the last
action taken before entering the Down phase.

Initialize
Restart
Counter (irc)

This action set the restart counter to the appropriate retry value. This
is typically 10.

Send Sync
Packet (ssp)

This action is used to create a Sync or USync packet and send it to the
peer.

For a normal Sync, the sequence number of the packet is the number
of the oldest packet in the outbound queue.

For a USync, the outbound queue must be checked and any non-
sequential packets discarded before the oldest packet sequence num-
ber is used.

Send SyncAck
Packet (sap)

This action is used to create a SyncAck or USyncAck packet and send it
to the peer. The packet can be created by copying the received Sync or
SyncAck, changing the code to an Ack (set bit 0), and reflect the
packet to the peer.
B-104 RTP Protocol Doc-RTP-F

RTP Data Transfer
B.6 RTP Data Transfer

The primary purpose of RTP is to transfer data. The requirements
are, in order;

• Provide error-free transfer across the network.
• Efficient utilization of the available bandwidth.

The transport layer (UDP) provides a simple, packet oriented,
best-effort service to RTP. UDP packets may arrive at the peer out
of order or not at all.

In order to meet these requirements, RTP employs an acknowl-
edgement mechanism, 16 slot queues to allow streaming transmis-
sion (up to 16 packets may be sent before receiving
acknowledgement) on the outbound side, and reorder of packets
on the inbound side. In addition to this queuing, an adaptive
retransmission time-out scheme is used to insure that lost packets
are retransmitted as soon as possible and helps to reduce the need
for deep queues.

B.6.1 Data Class Packets

Application data packets are encapsulated in RTP Data packets for
transport across the network. The Data packet is complemented by
the DataAck packet which is sent by the peer to indicate that it has
accepted the Data packet.

Data

The Data packet is used to transport application data packets to
the peer. Each packet is assigned a sequence number as they
are received from the application and are delivered at the peer
application in that same order.

0 1 2 3

0 Protocol (0x4023) Code Sequence #

4 Unit ID (0000-9999) Length

8 Application Data…

Label Description

Code: 0x00 (Data)

Sequence #: Senders outbound sequence number.

Unit ID: The unit ID of the sending RTP.
Length: 8 + length of application data.

Application Data: 0 to 1024 bytes of payload data.
B-105

RTP Data Transfer
DataAck

The DataAck packet is sent by the receiving RTP to indicate the
acceptance of the associated Data packet. The sender of the
Data packet takes reception of this DataAck packet to indicate
that the packet has been successfully transported and can now
be disposed of.

B.6.2 RTP Sequence Numbers

Every data packet sent across an RTP connection is assigned an 8
bit sequence number. This number is assigned as packets are
accepted from the application by the sending RTP and reflect the
order in which the application submitted them. RTP will deliver
these packets in this same order to the application at the opposite
end of the connection.

Because RTP is full-duplex, each end must maintain a set of
sequence numbers, one for inbound and one for outbound packets.
For each direction on the connection there is an available sequence
space. This is the range of sequence numbers that are currently
active in one direction.

Figure B - 4 RTP sequence space

0 1 2 3

0 Protocol (0x4023) Code Sequence #

4 Unit ID (0000-9999) Length

Label Description

Code: 0x01 (DataAck)

Sequence: Received Data packet sequence number.

Unit ID: The unit ID of the RTP that is the source of the
Data packet.

Length: 8

Note: An ack can be created by copying the RTP header of the Data packet,
changing its code to DataAck and length to 8, and reflecting the packet to the
peer.

111098 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Sent, not acked AvailableSent and acked

… …

Unavailable

Sequence space

Sender’s outbound
sequence number

Receiver’s inbound
sequence number

Unsent
B-106 RTP Protocol Doc-RTP-F

RTP Data Transfer
The sender should not send packets with sequence numbers that
are outside of the sequence space. The sender tracks the sequence
space as starting at the oldest unacknowledged packet to that
sequence number plus the depth of the queues (16).

The receiver tracks the sequence space from the inbound sequence
number, that is the sequence number of the next packet that will
be sent to the application, to that number plus the depth of the
queue, again, 16. The receiver will accept, that is acknowledge, all
packets up to and including the end of the sequence space. Packets
with sequence numbers less than the inbound sequence number
are old packets which have already been received and are dis-
carded. Packets that already exist in the queue are duplicates and
again are discarded. Packets greater than the end of the sequence
space are in error and are not accepted, that is, they are not
acknowledged and will be retransmitted by the sender. Properly
implemented, RTP should never send packets that are greater
than the end of the sequence space.
• Modular Arithmetic with Sequence Numbers - RTP must deal with the fact

that the 8 bit integer sequence has a limited range of 0 to 255. Once 28 (256)
packets have been sent, the sequence number will wrap from 255 back to 0.
Given that the sequence space is limited to 16, this can easily be dealt with by
employing modular arithmetic to compare sequence numbers.

• Sequence Number Comparisons - RTP sequence numbers are defined as an
unsigned 8 bit integer. The following C language macros compare RTP
sequence numbers:

typedef INT8 signed char;

#define SEQ_LT(a, b) ((INT8)((a) - (b)) < 0)
#define SEQ_LE(a, b) ((INT8)((a) - (b)) <= 0)
#define SEQ_GT(a, b) ((INT8)((a) - (b)) > 0)
#define SEQ_GE(a, b) ((INT8)((a) - (b)) >= 0)

When comparing two sequence numbers, we can simply subtract
one from the other and interpret the result as a signed integer. This
resulting relationship to zero is the relationship of the one
sequence number (a) to the other (b).

This is somewhat counterintuitive. For example, if we compare 255
to 0, we find the 255 is less than zero.

Figure B - 5 Sequence number comparison to zero

130129 … …254 255 0 1 2 128127
0 is greater than these numbers 0 is less than these numbers
B-107

RTP Data Transfer
Figure B - 6 shows a somewhat more intuitive way to visualize the
circular nature of RTP sequence numbers.

Figure B - 6 Comparison to 0 and 1

B.6.3 RTP Outbound Processing

Application data packets submitted to RTP for transport across the
network to the peer are encapsulated in RTP Data packets and
added to the outbound queue. Each entry in the queue is called a
slot and along with the RTP Data packet it has a counter and a
timer associated with it. The counter is used to count the number
of times that this packet has been sent and the timer is the elapsed
time since it was last sent. There must be at least 16 slots avail-
able in the outbound queue.

There are two global values that are associated with outbound
data, they are; the current outbound sequence number, and the
current retransmission interval.

Enqueuing Outbound Data Packets

The queue is kept in order of sequence numbers and represents
the currently occupied portion of the sequence space. The queue is
typically implemented as a linked list of structures in memory. The
head slot in the queue is the oldest, that is, the lesser sequence
number, and the tail is the newest.

Before RTP enqueues an outbound packet, it must check that there
is room in the sequence space for that packet. This is easily
accomplished by comparing the sequence number of the head slot
(the oldest unacknowledged packet) plus 16 with the current out-
bound sequence number. If the current outbound sequence num-
ber is less than the head number plus 16, then the packet may be
enqueued, otherwise, the outbound queue is full and the applica-
tion must wait.

New packets are assigned the current outbound sequence number
and it is then incremented. The new packet is placed in the tail slot
of the queue, its counter is set to 10, and its timer is initialized.

0 1255

129 128

Greater
than 0

Less
than 0

0 1

129130

Greater
than 1

Less
than 1

2

B-108 RTP Protocol Doc-RTP-F

RTP Data Transfer
Sending Outbound Data Packets

Packets are transmitted by examining the queue from head to tail
and sending the first packet that either has never been sent
(counter equal to 10) or has an elapsed time since last sent greater
than the retransmission time-out. This insures that packets that
need retransmission will get it in a timely manner.

As each slot of the queue is examined, several checks are made.
First, if the counter on any packet is zero, there is a major problem
with the connection to the network and it should be dropped and
reestablished. Second, if the elapsed time since last sent is greater
than the retransmit interval or the counter is equal to 10, the
packet is to be sent. After the packet is sent, its counter is decre-
mented, its timer restarted, and we repeat the procedure starting
at the head of the queue, not the next slot.

If we reach the tail of the queue, no packets are ready to be sent
so we simply repeat the procedure starting at the head slot again.

Dequeuing Outbound Data Packets

As DataAck packets are received, the outbound queue is examined
for the sequence number contained in the DataAck packet. If the
corresponding Data packet is in the outbound queue, it is
dequeued. The elapsed time since sent is the effective round-trip
time to the server and may be used to implement adaptive retrans-
mission.

Adaptive Retransmission Time-out

Adaptive retransmit is a mechanism that keeps the retransmission
interval set to a realistic value so that RTP does not stall or retrans-
mit unnecessarily. The idea is to update the retransmission interval
each time that a packet is dequeued from the outbound queue
using a running average over some number of packets plus some
time for overhead.

This is very helpful on connections with long round trip times. If the
retransmission interval is too long, when a Data or DataAck packet
is lost, RTP will send all packets in the outbound queue and then
stall waiting for the missing DataAck to arrive before retransmitting
the Data packet again. Conversely, if the interval is too short, it will
retransmit Data packets before the DataAck can make the trip back
and squander the bandwidth available on the connection.

Adaptive retransmit helps by insuring that Data packets needing
retransmission are sent again quickly and insures that there are no
more packets in the outbound queue at any given time than are
absolutely necessary.
B-109

RTP Data Transfer
The following C language function will compute the retransmission
interval based on the round trip time measured for the last packet
transferred:

typedef signed long INT32; /* 32 bit signed */
typedef unsigned long UINT32; /* 32 bit unsigned */

#define RETRANS_MAX (10 * SECOND_MS)
#define RETRANS_MIN (500 * MSECOND_MS)
#define RETRANS_C 4
#define RETRANS_M 2

UINT32 ComputeRetransInterval(UINT32 round_trip, UINT32
*retrans_interval)

{
INT32 a, t, c;

/* Compute average interval over last C packets by recursive
 approximation. The result is the minimum plus M times the
 average constrained to less than the maximum.

 round_trip = round trip time measured for last packet in ms.
 retrans_interval = pointer to the current retransmission

interval in ms.

 return value = value of new retransmission interval.
*/

t = (INT32)RETRANS_MIN + ((INT32)round_trip *
(INT32)RETRANS_M);

a = (INT32)*retrans_interval;
c = (INT32)RETRANS_C;

a = (a + ((t - a) / c));

if (a > RETRANS_MAX)
 a = RETRANS_MAX;

*retrans_interval = (UINT32)a;

return(*retrans_interval);
}

If an error occurs and RTP retransmits a Data packet, it cannot be
sure if the DataAck that it receives is for the last or the first packet
sent. This means that measures must be taken to ensure that the
retransmission interval is not allowed to decrease without limit.
The code above will not allow it to decrease to less than 500 ms.
However, a sudden change in the condition of the connection can
still cause problems.

A simple solution is to check the counter on Data packets before
they are dequeued. If the packet has been transmitted more than
three times, it is likely that the interval needs to be increased.
B-110 RTP Protocol Doc-RTP-F

RTP Data Transfer
Rather than recompute the interval, it should be doubled and then
constrained to be less than the maximum value (10 seconds).

The following C language function will increase the retransmission
interval as described.
UINT32 IncreaseRetransInterval(UINT32 *retrans_interval)
{
 /* Double the retransmission interval */
 *retrans_interval *= 2;

 if(*retrans_interval > RETRANS_MAX)
 *retrans_interval = RETRANS_MAX;

 return(*retrans_interval);
}

B.6.4 RTP Inbound Processing

As Data packets are received from the network, they are inserted
into the inbound queue. This queue is maintained in order of
packet sequence number. As with the outbound queue, the head
slot contains the packet with the lesser sequence number.

If the head slot of the queue contains the packet with the inbound
sequence number, it is dequeued and forwarded to the application.
The inbound sequence number is then incremented. This is the
mechanism whereby packets are re-ordered before being sent to
the application.

There is only one global variable associated with the inbound
queue, the current inbound sequence number.

Enqueuing Inbound Data Packets

As stated above, the inbound queue is maintained in ascending
order of sequence number. Before an inbound Data packet is
enqueued, its sequence number is checked as follows:

Is it less than the current inbound sequence number? If so, the
packet is old and indicates that the previous DataAck did not make
it back to the peer. A DataAck is generated for this new packet and
the packet is discarded.

Is it greater than or equal to the current inbound sequence number
plus 16? If so the packet is in error and is simply discarded without
acknowledgement. The sender has made the error and should
retransmit the packet again later.

If the above two tests are false, this packet falls with the sequence
space. The packet must now be inserted into the queue in its
proper place. If a packet with this sequence number is already in
the queue, then this new packet is a duplicate and is discarded.
B-111

RTP Data Transfer
Dequeuing Inbound Data Packets

RTP is always waiting for the Data packet with the inbound
sequence number to arrive. This packet is sent to the application
and the inbound sequence number is incremented.

Because the inbound queue is maintained in order, the packet of
interest will always be in the head slot of the queue. If this packets
sequence number is equal to the inbound sequence number, it is
sent to the application, the packet is dequeued, and the inbound
sequence number is incremented.
B-112 RTP Protocol Doc-RTP-F

RTP Server Discovery Through Cisco Routers
B.7 RTP Server Discovery Through Cisco Routers

As stated in the section above on Server Discovery, if the server
and the client are on different networks, the router must be
instructed to forward UDP packets destined for the well-know Ref
Tek port to the servers network.

The following is the configuration of the Cisco 2509 router shown in
figure 1.
!
version 11.3
no service password-encryption
!
hostname RefTek
!
username das#7377 password 0 das#7377
username das#7378 password 0 das#7378
!
chat-script reset-USRcourier-v34 “” “at&f1&d2s0=1” “OK”
chat-script dial-USRcourier-v34 “” “atdt\T” TIMEOUT 60 CONNECT

\c
!
interface Ethernet0
 description Interface to 192.168.1.0 network
 ip address 192.168.1.1 255.255.255.0
!
interface Serial0
 no ip address
 shutdown
!
interface Serial1
 no ip address
 shutdown
!
interface Async1
 description DDR connection to RT422 in DAS 7377
 ip address 192.168.2.1 255.255.255.0
 ip helper-address 192.168.1.255
 encapsulation ppp
 dialer in-band
 dialer wait-for-carrier-time 60
 dialer string 3530611
 dialer-group 1
 async mode interactive
 peer default ip address 192.168.2.2
 no cdp enable
 ppp authentication pap callin
B-113

RTP Server Discovery Through Cisco Routers
!
interface Async2
 description Direct connect to RT422 in DAS 7378
 ip address 192.168.2.1 255.255.255.0
 ip helper-address 192.168.1.255
 encapsulation ppp
 async mode interactive
 peer default ip address 192.168.2.3
 no cdp enable
 ppp authentication pap callin
!
ip http server
ip classless
ip forward-protocol udp 2543
ip route 192.168.1.0 255.255.255.0 Ethernet0
ip route 192.168.2.2 255.255.255.255 Async1
ip route 192.168.2.3 255.255.255.255 Async2
access-list 101 permit ip any any
access-list 101 deny igrp any host 255.255.255.255
dialer-list 1 protocol ip list 101
!
line con 0
line 1
 autoselect ppp
 script dialer dial-USRcourier-v34
 script reset reset-USRcourier-v34
 login local
 modem InOut
 transport input all
 speed 115200
 flowcontrol hardware
line 2 8
 autoselect ppp
 modem InOut
 flowcontrol hardware
line aux 0
line vty 0 4
 exec-timeout 0 0
 password reftek
 login
!
end

This configuration provides for a DAS with an RT422 to be con-
nected directly to the Async2 interface as well as a Dial-on-demand
routing (DDR) connection through a modem on the Async1 inter-
face.

The UDP broadcasts are handled by the global statement ip for-
ward-protocol udp 2543, and the Async interface statements ip
helper address 192.168.1.255. These statements cause the router
to forward UDP broadcasts received on those interfaces to the sub-
net directed broadcast address of the 192.168.1.0 network where
the server will see them.
B-114 RTP Protocol Doc-RTP-F

	Appendix B
	RTP Protocol Reference
	B.1 RTP Protocol
	B.1.1 Introduction
	B.1.2 Design Goals
	B.1.3 Example Application
	Figure B - 1 The example network
	Figure B - 2 Layers vs. interfaces in the example network

	B.2 RTP Encapsulation
	B.2.1 RTP Protocol Field
	B.2.2 RTP Packet Codes
	B.2.3 RTP Sequence Numbers
	B.2.4 RTP Unit ID Field
	B.2.5 RTP Length Field

	B.3 RTP Operation
	B.3.1 Phase Diagram
	Figure B - 3 RTP connection phases

	B.3.2 Down
	B.3.3 Server Discovery
	B.3.4 Synchronize
	B.3.5 Up

	B.4 RTP Server Discovery
	B.4.1 The Discovery Process
	B.4.2 Network Issues
	B.4.3 Discovery Class Packets

	B.5 RTP Link Synchronization
	B.5.1 Synchronization Class Packets
	B.5.2 The Link Synchronization Automaton
	B.5.3 State Transition Table
	B.5.4 States
	B.5.5 Events
	B.5.6 Actions
	B.5.7 Counters and Timers

	B.6 RTP Data Transfer
	B.6.1 Data Class Packets
	B.6.2 RTP Sequence Numbers
	Figure B - 4 RTP sequence space
	Figure B - 5 Sequence number comparison to zero
	Figure B - 6 Comparison to 0 and 1

	B.6.3 RTP Outbound Processing
	B.6.4 RTP Inbound Processing

	B.7 RTP Server Discovery Through Cisco Routers

