7~

REF TEK Refraction Technology

RTPD Protocols

RTP and Client

Version A

5/21/2008

Real — Time Data Network

~ RTP Monitor

TCP/IP—w

RTDispla

RT_View

File 11O

Archive

This REF TEK manual describes the protocols used by RTPD, the REF TEK telemetry server. REF TEK

Protocol (RTP) is used to communicate between REF TEK recorders and RTPD. The RTPD Client Protocol
is used by programs that attach as clients to RTPD.

Refraction Technology

RTPD Protocols

Copyright© 2008 Refraction Technology, Inc.

All rights are reserved. No part of this manual may be reproduced,
copied or transmitted in any form outside the approved recipient’s
organization without written permission from Refraction Technology
Inc.

Printed in USA.

Refraction Technology
1600 Tenth Street
Suite A

Plano, Texas 75074

Tel: 214-440-1265

Refraction Technology, Inc. i

Doc-RTPD-Protocol Rev A 05/20/08

Fax: 972-578-0045
www.reftek.com

Refraction Technology, Inc. il

Doc-RTPD-Protocol Rev A 05/20/08

About this manual:

This RTPD Protocols Technical Reference manual provides a detailed
overview of RTP and Client protocols. It covers the following broad
operational topics:

= RTP Protocol
= RTPD Client Protocol

Refraction Technology, Inc. i

RTPD Protocols

Revision History:

Revision Date Reason for change Pages
0.1 03/14/08 Initial release All
A 05/20/08 Update to new format All

CF Card Replacement:

Due to the large variability of CF cards available on the world market and
the resulting problems with compatibility due to memory layout, signal
structuring and power requirements, Refraction Technology cannot
guarantee a CF card will work in a REFTEK data recorder unless it is sold
through REFTEK itself. REFTEK ensures compatibility through
communications with CF manufacturers and rigorous in-house testing.
Some CF manufacturers refuse to provide adequate information or factory
controls to ensure that the product being sold today is the same as the
product sold earlier under the same part number. CF cards not purchased
from REFTEK may work at one temperature but not at another, or may fail
all together.

Refraction Technology, Inc. i

Doc-RTPD-Protocol Rev A 05/20/08

Software Version:

Current software and documentation is available on our web site. Some
early units may require hardware modifications to use the latest software.
Contact REF TEK if you have any queries on the compatibility of your unit(s)
and the current software release.

Firmware Update:

To update firmware from the FTP site

1. Login to our FTP site at: ftp.reftek.com/pub as:
User name: Anonymous
Password: Your E-mail address

Find the 130 firmware at ftp.reftek.com/pub/130/cpu/prom.

Download the zip file of the most recently released firmware version.

Update firmware:

Updating firmware in a 130 DAS requires the presence of a firmware file on
an installed Compact Flash device.

1. On power-up, the 130 checks the Compact Flash for the presence of ‘main.s3’ in
the root directory.
2. If the ‘main.s3’ file is present on the Compact Flash, the 130:
a. Reads the file.
b. DELETES the file.

c. Re-programs the internal flash memory.

Note: DO NOT DISTURB THE UNIT DURING THIS PROCESS.

Follow these steps to update the firmware of a 130 DAS:

1. Unzip the ‘main.s3’ file from the downloaded zip file of the most recently released
firmware.

2. Copy the desired firmware image to the root of the Compact Flash as ‘main.s3’
using a PC with a Compact Flash reader or ftp into the 130 DAS, with a Compact
Flash installed, in binary mode.

3. With the Compact Flash with the main.s3 image installed in the 130 DAS, issue a
reset command.

Refraction Technology, Inc. il

RTPD Protocols

(a) If you are at the 130 DAS:

1. Issue a Reset command from a PDA running PFC_130 or Physically disconnect
and reconnect power to the unit.

2. Observe the LCD for the following messages:

READING DISK DO NOT DISTURB
WRITING FLASH DO NOT DISTURB

3. The 130 DAS resets and returns to normal messaging.

(b) If you are remotely connected to a 130 DAS via telemetry mode:

1. If you are connecting remotely by a TCP connection:
a. First connect
b. Discover the unit
c. Acquire status

Issue a reset command from the Status screen.
Delete the unit from the Station List screen.

Wait at least 5 minutes.
At the Connections screen (reconnect id using a TCP connection) issue a Station
Discovery again to discover the 130 DAS station.

ik LN

Note: DO NOT DISTURB THE UNIT until the start-up LCD message reappears.

Refraction Technology, Inc. iv

Doc-RTPD-Protocol Rev A 05/20/08

Notation Conventions

The following notation conventions are used throughout Ref Tek
documentation:

Notation Description

ASCII Indicates the entry conforms to the American Standard Code for
Information Interchange definition of character (text) information.

Binary Indicates the entry is a raw, numeric value.

Hex Indicates hexadecimal notation. This is used with both ASCII characters
(0 -9, A-F) and numeric values.

BCD Indicates the entry is a numeric value where each four bits represents a
decimal digit.

FPn Indicates the entry is the ASCII representation of a floating-point
number with n places following the decimal point.

<n> Indicates a single 8-bit byte. When the contents are numeric, it

indicates a hexadecimal numeric value; i.e. <84> represents
hexadecimal 84 (132 decimal). When the contents are capital letters, it
represents a named ASCII control character; i.e. <SP> represents a
space character, <CR> represents a carriage return character and <LF>
represents a line feed character.

MSB Most Significant Byte of a multi-byte value.
MSbit Most Significant Bit of a binary number.
LSB Least Significant Byte of a multi-byte value.
LShit Least Significant Bit (bit 0) of a binary number.
YYYY Year as a 4-digit number

DDD Day of year

HH Hour of day in 24-hour format

MM Minutes of hour

SS Seconds of minute

1T Thousandths of a second (milliseconds)

ITII Unit ID number

n, nS nano, nanoSecond; 10-9 = 0.000000001
u, usS micro, microSecond; 10-6 = 0.000001

m, mS milli, milliSecond; 10-3 = 0.001

K, KHz Kilo, KiloHertz; 103 = 1,000

M, MHz Mega, MegaHertz; 106 = 1,000,000
G, GHz Giga, GigaHertz; 109 = 1,000,000,000
Kb, KB Kilobit, KiloByte; 210 = 1,024

Mb, MB Megabit, MegaByte; 220 = 1,048,576
Gb, GB Gigabit, GigaByte; 230 = 1,073,741,824

Refraction Technology, Inc. v

RTPD Protocols

Related Manuals:

130-SMA System Documents Number PDF file

130-SMA Startup (Command Line) Doc-SMA-Ops 130SMA_startup.pdf
Data Utilities Users Guide Doc-Datautils 130_utilities.pdf
130-SMA Command Interface Number PDF file

130 Cmd Line - Theory of Operations

Doc-CmdL-Theory

130_CLtheory.pdf

130 Cmd Line - Release Notes

Doc-CmdL-Release

130_CLRN.pdf

130 Cmd Line - Reference

Doc-CmdL-Ref

130_ClLcmd.pdf

130 Cmd Line - Recording Format

Doc-CmdL-Record

130_CLrecord.pdf

130-SM GUI Users Guide
130-SMA Board Documents

Doc-130-SMGui
Number

RT130SM.pdf
PDF file

RT608-B01 3 Channel 24-Bit A/D Doc-130-RT608 RT608r.pdf
RT608-B02 6 Channel 24-Bit A/D Doc-130-RT608 RT608r.pdf
RT506-B04 - CPU Doc-130-RT506 RT506r.pdf
RT530 - BO1 Lid Interconnect Doc-130-RT530 RT530r.pdf

RT570 - BO1 MicroDrive/Flash

Doc-130-RT570

RT570rB01.pdf

RT535 - Mass Memory Board
Optional Manuals

Doc-130-RT535
Number

RT535rB01.pdf
PDF file

SNDP Installation and Users Guide SNDP-OP-003 SNDPUser.pdf
SNDP Reference Guide SNDP-S-002 SNDPRef.pdf
RTCC Command / Control Users Guide RTCC-S-006 RTCC.pdf
RT_Display Users Guide RTD-S-007 RTDisplay.pdf
RT_View Users Guide RTV-S-005 RTView.pdf
RTPMonitor Installation and Users Guide | RTPM-S-008 RTPM.pdf
RTPD Installation and Users Guide RTPD-OP-005 RTPD.pdf

part of RTPD manual) RTP Protocol

Accelerometers
131A-02/3 3G Triaxial Accelerometer

Doc-131A-03/2

131A023.pdf

131A-02/2 3G Triaxial Accelerometer

Doc-131A-02/2

131A022.pdf

131A-01/3 4G Triaxial Accelerometer

Doc-131B-01/3

131B013.pdf

131B-01/1 4G Unixial Accelerometer

Doc-131B-01/1

131B011.pdf

Refraction Technology, Inc.

Vi

Doc-RTPD-Protocol Rev A 05/20/08

REF TEK Support and update notifications

As a valued user of REF TEK equipment we would like to
provide the best support possible by keeping you up to
date with our product updates.

If you would like to be notified of any REF TEK product
updates please spend a couple of minutes to register with
the REF TEK customer support team.

To register, either send an email to updates@reftek.com
giving us your name and REF TEK product you currently
have or fill out our online registration form at
www.reftek.com/registration

Once we register your contact we will only send necessary
notifications via email. The same notifications will be
shown on our website’'s www.reftek.com/support page

Thanks,
Your REF TEK support team

Refraction Technology, Inc. vii

Doc-RTPD-Protocol Rev A 05/20/08

Contents
1 RTP Protocol Referenceccccuverimriernmsimssmsimssssmsnmssmssnssnssnsansansnnsansansnnnnns 1
3 O I o o o o T 1
1.1.1 TN OdUCHION L e 1
1.2 DESIGN GOAIS .ttt e 2
1.3 EXample AppPliCation .o e 3
) S o o] o Tor=T o 11U =) o] o PR 4
1.4.1 RTP Protocol Field ... e e 5
1.4.2 L 2= (0]] o oY =T PP 5
1.4.3 RTP Sequence NUMDEIS ..ttt it e s e s e a e ra e ranennes 6
1.4.4 RTP UNIt ID Field ..onre et ettt e e e e e r e e neens 6
1.4.5 RTP Length Field ...couoeii e e e ae e e 6
I T S I S O o 1= o= | [0 o P 7
1.5.1 [E= EC I DTV | =] o [PP 7
1.5.2 310 8
1.5.3 Y= V7= gl B I olo 1YL= oY 8
1.5.4 15V 1o [o] T 4= T TR 9
1.5.5 6 o PR 9
1.6 RTP SeIrVEr DiSCOVEIY vttt e st st erar s e s et s sanesnaaneaaness 10
1.6.1 The DiSCOVEIY PrOCESS uviiiiiiti ittt it e e s ra e raneaneans 10
1.6.2 NEEWOIK ISSUES ... e e aeaaenes 11
1.6.3 Discovery Class PaCKeESciviiriiiii ittt e e aes 12
1.7 RTP LinkK SYNChronizationcoiiiiiii i i s i e i e aes 14
1.7.1 Synchronization Class Packetsocoviiiiiiii 14
1.7.2 The Link Synchronization Automatonccvviiiiiii e e 16
1.7.3 State Transition Table... ... e 17
1.7.4 S o= 1 P 18
1.7.5 T 19
1.7.6 AT ON S et 20
1.7.7 (o W] a1 =T == o Vo [[0 0 1=] o= 20
1.8 RTP Data Tran s el i e enenes 21
1.8.1 Data Class Packels . ..o e 21
1.8.2 RTP Sequence NUMDEIS ...ttt sttt e e s ree e e a s e raneeaeenneans 22
1.8.3 RTP OUtbOoUNA PrOCESSING . ittt it i e e e r et e raaeaaaaeeas 24
1.8.4 RTP INbOUNd ProCESSING ..uueiiieiiii et e e neees 27
1.9 RTP Server Discovery Through Cisco ROULEISc.cviiiiiiiiiiiiiiiiii e 29

Refraction Technology, Inc. ix

RTPD Protocols

2 RTPD Client Protocolc.ccciimimmmnmmimmsesmsnssansssssssssnsssnssnnssnsssnssnnsnnnsnnns 31
2.1 RTPD/Client ConNECiON OVeIVIEW ...iiiiiiiiiiiiiiisierteteetettssstietiisssssnssnsnsssnns 31
2.2 Client ConNection t0 RTPDuiiiiiiieiiiiiira e s e ssae e sneaneaaneannens 31
ARG IR O T=1 oV o Te =1 @] | =T u o] P 32
2.3.1 RECEIVING MESSAGES. ..ttt ittt s st e e raa e aaneess 34
2.3.2 Sending Command Packetso 35
2.3.3 10e] o] aT=Toi w0} IS =T=1=] o o 36
P S O 013 o o Y AN @01 o 1= o1 o [0 o PP 37
2.5 Other Message Payloadsc.ieiieiiiiiii i e 38
2 ST 0 I 1o T 39

Refraction Technology, Inc. b ¢

Doc-RTPD-Protocol

Figure 1 Example Network.....cccvviiiiiiiiiiiiiiic e
Figure 2 Layers VS Interfacescccoviiiiiiiiiiiiiiiiiciiie e
Figure 3 RTP Connection Phases
FIGUIE 4 RT P SeUENCE SPACE 1 iitiiiiiiittet st aitee s e it et s e aanateessaannteessaannneesssaanneeessannns
Figure 5 Sequence Number Comparison to Zero

FIGure 6 0 0 1 COMPAIe ..uuiiiiiiie ittt ras e st s s st s s e s s e st e s s s sn s a e s e asesanss

05/20/08

Refraction Technology, Inc.

Xi

A

REF TEK Refraction Technology

1 RTP Protocol Reference

1.1 RTP Protocol

1.1.1 Introduction

This document defines the REF TEK Protocol (RTP). RTP is designed to
provide the application with a full-duplex, packet-oriented, reliable, transport
over UDP network connections. The reader is assumed to have a working
understanding of the TCP/IP protocol suite and networking concepts in
general.

RTP is typically used in server-client fashion although this is by no means
required. Typically there will by a server application running on a IP host
somewhere on the network. Clients will attach themselves to the server to
send and receive data. The client is typically an embedded system that
attaches to the network through an asynchronous serial interface using
Point-to-Point protocol however other interfaces will be implemented in the
future. The server is typically an application program running on a host and
accesses the network via UDP sockets provided by the IP stack on the local
operating system.

The first implementation of RTP was on the RT422C Asynchronous
Communications Card for the REF TEK 72A series Data Acquisition Systems
(DAS) and the server application RTPD. RTPD and its associated software
run on Windows 98, NT, 2000, XP ,Linux, and Solaris (Intel and Sparc).
Throughout this document we will cover some of the details of this
implementation and use it to illustrate various design concepts.

Refraction Technology

RTPD Protocols

1.2 Design Goals
The following were the goals of the design for RTP:

= Entirely platform independent

All data values are stored in network byte order. Can be Implemented on any hardware
platform or OS that provides an IP protocol stack.

= Encapsulate the application data completely

Not have any dependency on the contents of any particular application data packet. That
is to say that the protocol will be completely unaware of what it is transporting to the
peer. The only requirement placed on the application is that the data packet be 1024
bytes or less in size.

= Self-contained and self-configuring at the client

The protocol stack must discover or be assigned all necessary parameters to operate
from the network. No configuration information will be stored by embedded
implementations nor will any higher level application configure or control it. The higher
level application simply submits data packets to be sent as they are ready and will
always be willing to receive data. However, the higher level application must respond to
flow control from RTP to avoid loss of data.

= Both the server and client must initiate the connection on-demand

When the application has data to send the connection will be established if needed
simply by submitting the data packet to be sent. If the connection is down, both must
respond to link establishment by the peer at all times. There does not need to be an
administratively opened or closed state, it is always administratively open.

= Recover from loss of connection without data loss

If a client is sending data to the server and the connection is lost momentarily, it will
reestablish the link and resume sending data. No data may be lost or passed on out of
order by the server. Momentary loss of connection will mean less than five minutes for
purposes of the protocol.

= Deal with long, thin, pipes effectively

It must be capable of high utilization (>90%) of slow (9.6k), high latency (>1 second),
connections such as VSAT links. We will use deep queues (16 slots) and adaptive
retransmission time-out to achieve this goal.

= Small and relatively simple implementation

It must be suitable for embedding in dedicated communications hardware for REF TEK
recording systems.

= Function at the application layer

Uses the standard UDP Socket API on the server system. All network traffic will be UDP
datagram to/from the REF TEK port number, port 2543. This port is the well-known REF
TEK port and is registered with the Internet Assigned Numbers Authority (IANA) for use
with both UDP and TCP. UDP broadcasts will be used only during link establishment and
will not be sent more frequently than one packet every ten seconds per client.

Refraction Technology, Inc. 2

Doc-RTPD-Protocol Rev A 05/20/08

1.3 Example Application

Throughout this document we will use the example system shown in Figure 1
to illustrate the details of RTP.

Server
RTPD

2 192.168.1.0 Network

Ethernet

A

Cisco 2509 Router Ethernet 0

Async 1-8

JERRRENR

Modem | 192.168.2.0 Network

Figure 1 Example Network

This setup consists of two class C networks interconnected by a router. The
client is on one network (192.168.2) and connects to the router through an
asynchronous serial interface using PPP. The server is on the other network
(192.168.1). The router routes traffic between the between the two
networks.

The DAS sends its recording format data to the server as it is acquired. The
server sends command format packets to the DAS and receives responses as
data packets.

Figure 1 above and 2 show a schematic representation of the example
network.

192.168.2.0 Network 192.168.1.0 Network 1D g

- Recording Format Data and Commands
Ap plication -

a RTP Packets

Transport

UDP Datagrams

Layers

Network
P
—» | |1 1

Frames.
¢ PPP |IEEE 802
\%

ASYNC1 I" Ethemnet0 I ° Ethemet

Data Link

Media

@
k3

Interfaces

Figure 2 Layers VS Interfaces

Refraction Technology, Inc. 3

RTPD Protocols

Data from the DAS flows down through the stack to the interface at the
bottom and across the wire to the router. The router forwards the packet to
its Ethernet interface and on to the server. It then flows up through the
stack at the server to the application.

Note: In a router packets only come up the stack to the network layer and are
routed. At the transport layer and above, the client views the connection from
end-to-end and is unaware of any routing or interface issues. From the network
layer down, only the next-hop host is visible and at the network layer all
forwarding issues are dealt with.

1.4 RTP Encapsulation

Application data is encapsulated by RTP for transport across the network
and de-capsulated upon arrival. This is accomplished by prep ending an
eight byte packet header, that contains the additional data required by the
protocol to perform error-correction and various control functions, to the
data packet.

The RTP header has the following form:

0 |1 2 3
0 | Protocol (0x4023) Code Sequence #
4 | Unit ID (0000-9999) Length
8 | Data...

All values in any RTP packet are stored in network byte order. When
transmitted on the network, bytes are sent from bit 0 to bit 7, multi-byte
values are sent LSB first, MSB last. This is also known as big-endian byte
order and is the same as specified for the entire TCP/IP protocol family.

The RTP packet is further encapsulated within a UDP datagram as it passes
through the transport layer on its way down the protocol stack. All UDP
encapsulated RTP packets will typically be sent to and received from the
well-known REF TEK port number 2543. However, the server may serve
clients on ephemeral ports if so desired.

Refraction Technology, Inc. 4

Doc-RTPD-Protocol Rev A 05/20/08

1.4.1 RTP Protocol Field

The Protocol field is used to identify the contents of this UDP datagram as a
RTP packet. The RTP protocol number is 0x4023. An early version of RTP
was implemented at the network layer directly on top of PPP at the data link
layer for use over dedicated asynchronous serial links (RT422A and B). The
0x4023 protocol was registered as a PPP protocol number with IANA at that
time. We have used the same value here simply because we already have
this number and it will serve this purpose adequately.

1.4.2 RTP Packet Codes

The Code field is an 8 bit unsigned integer that is used to identify the type of
RTP packet. Up to 256 types of packets may be used by RTP.

There are currently nine different packet types that fall into three classes:

= Data packets used to transport data over the connection to the peer.
= Server Discovery packets used by a client to find a server.

= Synchronization packets used to synchronize the sequence numbers used at each
end of the connection for error-correction.

The table below lists the types of packets currently defined for RTP.

Code | Binary code Name Description

0x0 00000000 Data Application data (payload).

0x01 00000001 DataAck Data acknowledgement, data packet accepted by
peer

0x04 00000100 Sync Synchronize outbound sequence number.

0x05 00000101 SyncAck Acknowledgement of sequence number.

0x06 00000110 usSync Unconditional synchronize.

0x07 00000111 USyncAck | Acknowledgement of unconditional synchronization

0x08 00001000 Svrlnquiry | Server discovery inquiry.

0x09 00001001 InquireAc Server acknowledgement.

0x0B 00001011 InquireNak | Server negative acknowledgement.

All codes not listed are reserved for future use. Note that as defined, bit 0 of
the code field may be interpreted as the “ack bit”, bit 1 as the “unconditional
bit”, bit 2 as the “sync bit”, and bit 3 as the “discovery bit".

The three classes of packets can be easily distinguished by checking bits 2
and 3 of the code field. If bit 2 is set, this is a synchronization packet, bit 3
indicates a server discovery packet, otherwise it is data.

Refraction Technology, Inc. 5

RTPD Protocols

1.4.3 RTP Sequence Numbers

The Sequence Number field is an 8 bit unsigned integer that is used to
correct transmission errors. The value of this field ranges from 0 to 255.

As each data packet is sent, the sequence number increments. The receiving
end generates an acknowledgment packet for each packet that is accepted
with the same sequence number and sends it back to the sender. The sender
then knows that packet has been successfully transported to the peer.

The sequence number is used by the receiver to reorder packets, detect
duplicate packets, and detect old packets. More details about data transfer
can be found in RTP Data Transfer below.

1.4.4 RTP Unit ID Field

The Unit ID field is a 16 bit unsigned integer that identifies the application at
the peer. In the case of the RT422C card, this is the DAS unit ID number.
However, the purpose of this number is to identify the peer at the opposite
end of the connection, which is not necessarily a DAS. This field should be
thought of as a peer, or connection, number.

1.4.5 RTP Length Field

The length field is a 16 bit unsigned integer number of bytes in the RTP
packet including the RTP header. This means that if there are 0 data bytes,
the length field will be set to 8.

Refraction Technology, Inc. 6

Doc-RTPD-Protocol Rev A 05/20/08

1.5 RTP Operation

In order for a client to move data across the network to a server, it must
connect to the network, discover the address of the server, and then
synchronize sequence numbers.

In order to accomplish this, RTP goes through several distinct phases.

Down, the link is not available for data transfer.
Server Discovery, the client is looking for the server.
Synchronization, client and server are synchronizing sequence numbers.

Up, the link is available for data transfer.

s W

If a server wishes to connect to a client, it must synchronize but it will not
need to discover the client’s address, so the discovery phase is simply skipped.

1.5.1 Phase Diagram
Figure 3 shows the relationships between these phases.

S —
/, \\ \/\/ \\
/ Down \] (s \]
\ Discove
\ / Wy

[/ FU@GSS
e Na v

/ : AN Y N\
/ \ / o A
b Synchronization |
\ / Success |)

AN / AN

Figure 3 RTP Connection Phases

Refraction Technology, Inc. 7

RTPD Protocols

1.5.2 Down

While RTP is in the Down phase, the connection is not available for data
transfer. The connection begins and ends in this phase.

One of two events signhals that the connection should be established. If the
application submits a data packet for transfer, the lower layers are opened if
necessary, and RTP proceeds to the Server Discovery phase. Clients will
also respond an incoming connection, that is, the transport layer signals an
Up event. Servers are generally always connected to the network and
respond to Server Inquiry packets to establish inbound connections.

1.5.3 Server Discovery

This is the only aspect of RTP that follows a client-server model and allows a
client to discover its server. This mechanism meets the self-configuration
requirements put forth in the design goals above.

Clients must discovery the IP address and port number (the endpoint) that
the server will use to service its connection. Once connected to the network,
the client periodically sends Server Inquiry packets containing the endpoint
as subnet-directed broadcasts to the well-known REF TEK port. If the client
has never been connected, the endpoint is 0.0.0.0:2543, if it has, it is the
endpoint last used. The server listens for these broadcasts and responds
with a InquireAck if the endpoint is correct or a InquireNak that contains the
endpoint that it desires.

Once the client receives as InquireAck from the server, it proceeds to the
Synchronize phase.

Servers simply skip this entire phase and proceed directly to the Synchronize
phase. The server must always accept and respond to Discovery packets
that it receives.

Refraction Technology, Inc. 8

Doc-RTPD-Protocol Rev A 05/20/08

1.5.4 Synchronize

In order to perform error-correction, each end of the connection must notify
the other of the sequence number of the next Data packet that it will send
and receive acknowledgement. This can be accomplished by a finite-state
automaton and is covered in detail below.

Note that there are two synchronize packets defined, Sync, and USync. The
normal Sync, sometimes referred to as a warm Sync indicates that there has
been a previous connection and we are attempting to resume that
connection. The unconditional or USync, sometimes referred to as a cold
Sync indicates that the sender has never been connected and that the
receiver should not attempt to resume any connection.

Once an Ack, either SyncAck, or USyncAck, has been both sent and
received, RTP proceeds to the Up phase. While in the Synchronize phase, no
Data class packets are allowed to be transferred. Any Data class packets
received are silently discarded.

1.5.5 Up

While RTP is in the Up phase, data may flow across the connection. All types
of RTP packets are allowed and data moves across the connection error-
free.

Refraction Technology, Inc. 9

RTPD Protocols

1.6 RTP Server Discovery

Server Discovery is a mechanism used by RTP clients to discover the IP
address and UDP port number that the server will use to service its
connection. This mechanism is the only aspect of RTP that employs the
client-server model.

RTP servers must listen on UDP port 2543, the well-known REF TEK port, for
RTP Server Inquiry packets from clients. Clients send these packets as
subnet-directed broadcasts. These packets carry as data the endpoint that
will be used by the RTP server to service the connection.

1.6.1 The Discovery Process

After a client has successfully attached to the network (an Up from the
transport layer), it begins periodically (typically every ten seconds)
broadcast a Server Inquiry packet to the REF TEK port. This will continue
until successful discovery is achieved or the network connection goes down.

When a server receives a Server Inquiry packet, it examines the contents of
the packet, specifically the Unit ID, and endpoint, and either reactivates a
previous connection for the Unit or establishes a new connection for the
Unit. If the connection is reestablished, the server can simply send an
InquireAck to the peer. If a new connection is being activated, the server
sends an InquireNak to the peer that contains the endpoint that the client
must use to communicate with the server. Note that the server should
unicast the Ack packet to the source endpoint of the Server Inquiry packet.

When a client receives an InquireAck from a server, it simply uses the
endpoint within the packet and proceeds to the Synchronize phase. When a
client receives an InquireNak from a server, it broadcasts a new Server
Inquiry packet containing the new endpoint and the process continues.

A client will not leave the Discovery phase until it receives an InquireAck or
the transport layer signals a down event. This mechanism ensures that the
server and the client agree on the server’s endpoint. If a packet is lost
during this process it will still result in successful discovery.

Refraction Technology, Inc. 10

Doc-RTPD-Protocol Rev A 05/20/08

1.6.2 Network Issues

Because the client broadcasts Server Inquiry packets, there can be
problems in your network caused by routers not forwarding these packets to
other networks. It is required that the server be visible to the client through
subnet-directed broadcasts in order for the server discovery process to
succeed.

If the server and client both reside on the same network, this is not an
issue. However, in the real world, this may not be the case. In the case of
our example system (see Figure B - 1 on page B-87), the server is on the
other side of a router and measures must be taken to insure that the
discovery process can succeed.

Note: the following aspects of the Server Inquiry packet:

= They are always a subnet-directed broadcast. In our example, a class C
network, they are sent to 192.168.2.255.

= They are always a UDP packet broadcast to the well-known REF TEK port
(2543).

Given this information, routers generally can be configured to allow limited
forwarding of these broadcasts. In our example, the router is configured to
forward only UDP packets destined for port 2543 to the subnet-directed
broadcast address (192.168.1.255) of the other network and this solves the
problem. The responses from the server are unicast back to the client and
need no special attention.

Most routers provide this ability because various protocols, such as BOOTP,
must provide this same type of functionality by employing UDP broadcasts.

See the section below for the configuration of a Cisco 25xx router that
handles the issues in the example network.

Refraction Technology, Inc. 11

RTPD Protocols

1.6.3 Discovery Class Packets
The three packets used in the server discovery process in detail are:

= ServerInquiry - Packet is sent as a subnet-directed UDP broadcast to the well-
known REF TEK port (2543). The endpoint of the server is carried in the packet as
six bytes of data. It is used by the client to query the server as to the server
endpoint to use for the RTP connection.

0 |1 2 3
0 Protocol (0x4023) Code Sequence #
4 Unit ID (0000-9999) Length
8 Server IP Address
12 Port #
Code: 0x08 (Svrinquiry)
Unit ID: The unit ID of the client. The server will use this to identify the client.
Length: 14
Server IP 32 bit unsigned integer IP address of the server. If unknown, 0.0.0.0,
Address: otherwise, the address last used for the RTP connection.
Port #: 16 bit unsigned port number of server. If unknown, 2543 (0Ox09EF),
otherwise, the UDP port last used for the RTP connection.

Note: The sequence numbers used for Discovery and Synchronize class packets
should be distinct from that used for Data class packets. During the discovery
phase, the sequence number is simply used to match inquiries with responds. The
client must increment the sequence number each time it sends a SvrInquiry
packet.

The server must use the same sequence number in its response, either
InquireAck, or InquireNak.

= InquireAck - Packet is a positive server response to a Svrinquiry packet from a
client. It is used to confirm the server endpoint to be used by the client for the RTP

connection.
0 |1 2 3
0 Protocol (0x4023) Code Sequence #
4 Unit ID (0000-9999) Length
8 Server IP Address
12 | Port # |
Code: 0x09 (InquireAck)
Unit ID: The unit ID of the client. The server will use this to identify the client.
Length: 14
Server IP Address: 32 bit unsigned integer IP address of the server.
Port #: 16 bit unsigned port number of server.

The sequence number is the sequence number of the inquiry packet for
which this packet is the response. Together, the Server IP Address and Port
number make up the server endpoint to be used by the client for the RTP
connection.

Refraction Technology, Inc. 12

Doc-RTPD-Protocol Rev A 05/20/08

= InquireNak - Packet is a negative server response to a Svrinquiry packet from a
client. It is used to communicate to the client the server endpoint that must be used
for the RTP connection.

0 [1 2 3
0 Protocol (0x4023) Code Sequence #
4 Unit ID (0000-9999) Length
8 Server IP Address
12 | Port #
Code: 0x0B (InquireNak)
Unit ID: The unit ID of the client. The server will use this to identify the client.
Length: 14
Server IP 32 bit unsigned integer IP address of the server.
Address:
Port #: 16 bit unsigned port humber of server.

The sequence number is the sequence number of the inquiry packet for
which this packet is the response. Together, the Server IP Address and Port
number make up the server endpoint to be used by the client for the RTP
connection.

Refraction Technology, Inc. 13

RTPD Protocols

1.7 RTP Link Synchronization

RTP link synchronization is a process whereby an RTP implementation
notifies its peer of its outbound sequence number. Each end of an RTP
connection maintains two sequence numbers, which are the inbound and
outbound sequence numbers. Each end is only responsible for synchronizing
the outbound sequence number with the peer.

The process is complete when each end has both sent and received an
acknowledgment packet from the peer. A finite-state-automaton (FSA) is
provided that will accomplish this process.

During the synchronization process, the outbound sequence number is the
number of the first data packet that will be sent to the peer. The inbound
sequence number is the number of the next packet that will be forwarded to
the application by RTP.

1.7.1 Synchronization Class Packets

There are four synchronization class packets. They are presented in detail
below. None of these packets carry data, that is, there is no additional data
beyond the RTP header.

The four synchronization packets are:

= Sync - Packet is used to inform the peer of the sequence number that will be used
on the next data packet that it will receive. This is a "normal” Sync, this means there
was a previous connection to the peer and that the peer should check to see if the
sequence number falls within its inbound sequence space. If it does, the connection
is resumed, otherwise the action is the same as for USync (see below).

0 |1 2 3
0 | Protocol (0x4023) Code Sequence #
4 | Unit ID (0000-9999) Length
Label Description
Code: 0x04 (Sync)
Sequence: | Local outbound sequence number.
Unit ID: The unit ID of local RTP.
Length: 8

Refraction Technology, Inc. 14

Doc-RTPD-Protocol Rev A 05/20/08

= SyncAck - Packet is used to acknowledge a Sync packet received from the peer. The
packet can be created by simply copying the received Sync, changing its code to
SyncAck, and reflecting it back to the peer.

0 |1 2 3
0 Protocol (0x4023) Code Sequence #
4 Unit ID (0000-9999) Length

Label Description

Code: 0x05 (SyncAck)

Sequence: | Peer’s outbound sequence number.
Unit ID: The unit ID of the peer RTP.
Length: 8

= USync - or unconditional synchronize packet, is used to inform the peer that it
has never been successfully connected to the peer and has no out-of-order data in
its outbound queue. The peer must flush any pending out-of-order data that might
be in its inbound queue and set its inbound sequence number.

0 |1 2 3
0 | Protocol (0x4023) Code Sequence #
4 | Unit ID (0000-9999) Length

Label Description

Code: 0x06 (USync)

Sequence: | Local outbound sequence number.
Unit ID: The unit ID of local RTP.

Length: 8

= USyncAck - Packet is used to acknowledge a USync packet received from the peer.
The packet can be created by simply copying the received USync, changing its code
to SyncAck, and reflecting it back to the peer.

0 |1 2 3
0 | Protocol (0x4023) Code Sequence #
4 | Unit ID (0000-9999) Length
Label Description
Code: 0x07 (USyncAck)
Sequence: | Peer’s outbound sequence number.
Unit ID: The unit ID of the peer RTP.
Length: 8

Refraction Technology, Inc. 15

RTPD Protocols

1.7.2 The Link Synchronization Automaton

Here is presented a finite-state-automaton (FSA) that will drive the link
synchronization process.

The FSA is defined by events, actions, and state transitions. Events include:
reception of external signhals such as open and close commands and signals
from lower layers, reception of RTP synchronization class packets, and the
expiration of the restart timer. Actions include: communicating with the
lower layers and transmitting packets to the peer.

The following table summarizes the events handled and actions taken by the
automaton.

tls This layer start. Up Lower layer is up.
tif This layer finished. Down Lower layer is down.
tlu This layer up. Open Open the connection.
tld This layer down. Close Close the connection.
irc Initialize restart counter. TO+ Time-out with restart counter > 0.
ssp Send synchronize packet. TO- Time-out with restart counter = 0.
sap Send sync acknowledge packet. | RSP Received synchronize packet.
RAP Received sync acknowledge
packet.

Refraction Technology, Inc. 16

Doc-RTPD-Protocol Rev A 05/20/08

1.7.3 State Transition Table

The complete state transition table follows. States are indicated horizontally
and events are read vertically. State transitions and actions are represented
in the form action/next-state. Multiple actions are separated by commas and
may continue on the next line. The dash indicates an illegal action.

Events 0-Closed 1-Stopped 2-Sync-sent 3-Ack-rcvd 4-Ack-sent 5-Opened
/state
Up irc, ssp/2 irc, ssp/2 - - - -
Down 1 1 1 1 1 tld/1
Open tls/1 tls/1 2 3 4 tid, irc,
ssp/2
Close tlf/0 tlf/0 tlf/0 tlf/0 tlf/0 tld, tlf/0
TO+ - - ssp/2 ssp/2 ssp/4 -
TO - - - tld, tlf/1 tld, tlf/1 tld, tlf/1 -
RSP - irc, ssp, sap/4 sap, tlu/5 sap/4 tld, ssp,
sap/4 sap/4
RAP - irc, ssp/2 irc/3 ssp/2 irc, tlu/5 tid, irc,
ssp/2

The states in which the restart timer is running are identified by the
presence of the TO events.

If the link has never been in the Opened state (it is “cold”), unconditional
Syncs and Sync Acks (USync, USyncAck) are sent to the peer, otherwise
regular Syncs and SyncAcks are sent.

The Closed state (0) differs from the Stopped state (1) only in that the link
is dropped (tIf) before the transition to Closed. In either state an incoming
connect brings this layer up. This allows the application to use the Open and
Close events as initiate and drop the link commands respectively. The
automaton is in the Closed state only when the application commands it. It
is in the stopped state due some external factor such as loss of carrier.

Refraction Technology, Inc. 17

RTPD Protocols

1.7.4 States
The following is a brief description of each FSA state.

State ‘ Description

Closed (0) In this state, RTP has not been initialized and the transport layer is not up.
No packets can be sent or received in this state. An RTP implementation
should issue an open event as soon as possible at startup. The restart timer
is not running.

Stopped (1) In this state the transport layer is not up. The FSA will begin to synchronize
the link when the transport layer signals an Up event. An Open event will
cause the start action to initiate the connection. The restart timer is not
running.

Sync-sent (2) | In this state a Sync (or USync) has been sent to the peer but a SyncAck (or
USyncAck) has not been received. The restart timer is running and the Sync
packet will be sent again upon its expiration.

Ack-rcvd (3) In this state a Sync has been sent to and a SyncAck has been received from
the peer. However, no Sync has been received and no Sync-Ack has been
sent. The restart timer is running and the Sync packet will be sent again
upon its expiration.

Ack-sent (4) In this state a Sync and a SyncAck have been sent to the peer. No SyncAck
has been received. The restart timer is running and the Sync will be sent
again if it expires.

Opened (5) In this state a SyncAck has been both sent to and received from the peer.
The connection is now synchronized and ready to transfer data. The RTP
connection is Up and the restart timer is not running.

Refraction Technology, Inc. 18

Doc-RTPD-Protocol Rev A 05/20/08

1.7.5 Events

FSA actions and state transitions are caused by events. The following is a
brief summary of the events handled by the FSA.

Event Description

Up This event comes from the transport layer to indicate that the network will
now accept traffic. On clients, this event is intercepted to initiate the server
discovery process and upon successful completion is then sent to the FSA to
cause the link to synchronize.

Down This event comes from the transport layer to indicate that the connection to
the network is down and unavailable for traffic. This causes the FSA to
transition to the Stopped state.

Open This event comes from the application and indicates that it desires to send
data across the link. If the transport layer is not up, it causes action to
initiate the connection to the network. If the FSA is already opened, this
event causes re synchronization.

Close This event comes from the application and indicates that the connection
should be dropped. The connection to the network is broken and the FSA
transitions to the Closed state.

Time-out These events occur when the restart timer expires. The restart timer is used
TO+,TO- to time the response to Sync packets.

The TO+ event indicates that the restart timer expired with the restart
counter greater than zero. The restart is decremented and the packet is
retransmitted.

The TO- event indicates that the restart timer expired with the restart
counter equal to zero. The link is recycled, that is, the connection to the
network is dropped, then reestablished. Note that this causes server
discovery to happen again before synchronization.

Received This event occurs when a Sync (or USync) packet is received from the peer.
Sync Packet | If the packet is a Sync, the sequence number within the packet is check
(RSP) against the inbound sequence space, if it is within the space, it is simply

Ack’ed. If not, it is treated as a USync.

If the packet is a USync, the inbound queue is flushed and the inbound
sequence number is set to the sequence number within the USync packet.
Because this informs the us that the peer is “cold”, this forces the local
system to be “cold” as well. The local outbound queue must be examined for
non-contiguous packets.

If any are found, they must be discarded and the outbound sequence
number must be set to the oldest contiguous packet in the outbound queue
and a USync must be transmitted.

Received This event occurs when a SyncAck (or USyncAck) is received from the peer.
SyncAck If the sequence number in the packet doesn’t match that of the last

packet (RAP) | transmitted Sync (or USync) the packet must be discarded.

Refraction Technology, Inc. 19

RTPD Protocols

1.7.6 Actions

Actions are taken by the automaton as events occur. The following is a brief
description of the various actions that may be taken by the FSA.

Action Descriptions

Illegal Action (-) This is an action that should never occur in a properly
implemented automaton. This indicates an internal error
that needs to be corrected.

This Layer Start (tls) This action causes initiation of the connection to the
network. Usually this simply causes an Open event to the
transport layer which in turn opens the layers on down
the stack.

This Layer Up (tlu) This action occurs as the synchronization process is
successfully completed and is used to perform whatever
task is required at that point. This is the last action taken
as the connection comes opened and may be used to
notify the application the RTP connection is now ready for
traffic.

This Layer Down (tld) This action occurs when the connection is no longer ready
to carry data traffic. It is the first action taken as RTP
leaves the Up phase and can be used to notify the
application that the connection is down.

This Layer Finished (tlf) This action causes disconnection from the network. This is
the last action taken before entering the Down phase.

Initialize Restart Counter (irc) This action set the restart counter to the appropriate retry
value. This is typically 10.

Send Sync Packet (ssp) This action is used to create a Sync or USync packet and
send it to the peer.

For a normal Sync, the sequence number of the packet is
the number of the oldest packet in the outbound queue.

For a USync, the outbound queue must be checked and
any non-sequential packets discarded before the oldest
packet sequence number is used.

Send SyncAck Packet (sap) This action is used to create a SyncAck or USyncAck
packet and send it to the peer. The packet can be created
by copying the received Sync or SyncAck, changing the
code to an Ack (set bit 0), and reflect the packet to the
peer.

1.7.7 Counters and Timers

The RTP FSA makes use of one counter, the restart counter, and one timer,
the restart timer. The restart counter is decremented each time that as
Sync or USync packet is sent. Expiration of the restart timer causes the TO
events that cause retransmission of these packets.

By default the restart timer should be set to six (6) seconds and the restart
counter should be set to 10.

Refraction Technology, Inc. 20

Doc-RTPD-Protocol Rev A 05/20/08

1.8 RTP Data Transfer

The primary purpose of RTP is to transfer data. The requirements are, in
order;

= Provide error-free transfer across the network.

= Efficient utilization of the available bandwidth.

The transport layer (UDP) provides a simple, packet oriented, best-effort
service to RTP. UDP packets may arrive at the peer out of order or not at
all.

In order to meet these requirements, RTP employs an acknowledgement
mechanism, 16 slot queues to allow streaming transmission (up to 16
packets may be sent before receiving acknowledgement) on the outbound
side, and reorder of packets on the inbound side. In addition to this queuing,
an adaptive retransmission time-out scheme is used to insure that lost
packets are retransmitted as soon as possible and helps to reduce the need
for deep queues.

1.8.1 Data Class Packets

Application data packets are encapsulated in RTP Data packets for transport
across the network. The Data packet is complemented by the DataAck
packet which is sent by the peer to indicate that it has accepted the Data
packet.

Data

The Data packet is used to transport application data packets to the peer.
Each packet is assigned a sequence number as they are received from the
application and are delivered at the peer application in that same order.

0 [1 2 3
0 | Protocol (0x4023) Code Sequence #
4 | Unit ID (0000-9999) Length
8 | Application Data...

Label Description

Code: 0x00 (Data)

Sequence #: Senders outbound sequence number.
Unit ID: The unit ID of the sending RTP.
Length: 8 + length of application data.
Application Data: 0 to 1024 bytes of payload data.

Refraction Technology, Inc. 21

RTPD Protocols

DataAck

The DataAck packet is sent by the receiving RTP to indicate the acceptance
of the associated Data packet. The sender of the Data packet takes reception
of this DataAck packet to indicate that the packet has been successfully
transported and can now be disposed of.

0 [1 2 3
0 Protocol (0x4023) Code Sequence #
4 Unit ID (0000-9999) Length
Label Description
Code: 0x01 (DataAck)
Sequence: Received Data packet sequence number.
Unit ID: The unit ID of the RTP that is the source of the Data packet.
Length: 8

Note: An ack can be created by copying the RTP header of the Data packet,
changing its code to DataAck and length to 8, and reflecting the packet to the
peer.

1.8.2 RTP Sequence Numbers

Every data packet sent across an RTP connection is assigned an 8 bit
sequence number. This number is assigned as packets are accepted from the
application by the sending RTP and reflect the order in which the application
submitted them. RTP will deliver these packets in this same order to the
application at the opposite end of the connection.

Because RTP is full-duplex, each end must maintain a set of sequence
numbers, one for inbound and one for outbound packets. For each direction
on the connection there is an available sequence space. This is the range of
sequence numbers that are currently active in one direction.

Recsier's inbound

Se0uence numbsr
| Sequence space

OO A O T I O 4 O O S - O O A T
» 14 » + L »
Sent and zcked Sent, not acked Ussent | Mgzl Unaveiizble
Sender’s outbound
$8QUence numbsr

Figure 4 RTP Sequence Space

Refraction Technology, Inc. 22

Doc-RTPD-Protocol Rev A 05/20/08

The sender should not send packets with sequence numbers that are outside
of the sequence space. The sender tracks the sequence space as starting at
the oldest unacknowledged packet to that sequence number plus the depth
of the queues (16).

The receiver tracks the sequence space from the inbound sequence number,
the sequence number of the next packet that will be sent to the application,
to that number plus the depth of the queue, again, 16. The receiver will
accept, that is acknowledge, all packets up to and including the end of the
sequence space. Packets with sequence numbers less than the inbound
sequence number are old packets which have already been received and are
discarded. Packets that already exist in the queue are duplicates and again
are discarded. Packets greater than the end of the sequence space are in
error and are not accepted, that is, they are not acknowledged and will be
retransmitted by the sender. Properly implemented, RTP should never send
packets that are greater than the end of the sequence space.

= Modular Arithmetic with Sequence Numbers - RTP must deal with the fact that the 8
bit integer sequence has a limited range of 0 to 255. Once 28 (256) packets have
been sent, the sequence number will wrap from 255 back to 0. Given that the
sequence space is limited to 16, this can easily be dealt with by employing modular
arithmetic to compare sequence numbers.

= Sequence Number Comparisons - RTP sequence numbers are defined as an unsigned

8 bit integer. The following C language macros compare RTP sequence numbers:
typedef INT8 signed char;

#define SEQ LT(a, b) ((INT8) ((a) - (b)) < 0)
#define SEQ LE(a, b) ((INT8) ((a) - (b)) <= 0)
#define SEQ GT(a, b) ((INT8) ((a) - (b)) > 0)
#define SEQ GE(a, b) ((INT8) ((a) - (b)) =>= 0)

When comparing two sequence numbers, we can simply subtract one from
the other and interpret the result as a signed integer. This resulting
relationship to zero is the relationship of the one sequence number (a) to
the other (b).

This is somewhat counterintuitive. For example, if we compare 255 to 0, we
find the 255 is less than zero.

129 130 254 255 0 1 2 127 128
0is greater than these numbers 0'is less than these numbers

Figure 5 Sequence Number Comparison to Zero

Refraction Technology, Inc. 23

RTPD Protocols

Figure B - 6 shows a somewhat more intuitive way to visualize the circular
nature of RTP sequence numbers.

25501 012

Greater Greater
than 0 / than 1

129 128 130 129

Figure 6 O to 1 Compare

1.8.3 RTP Outbound Processing

Application data packets submitted to RTP for transport across the network
to the peer are encapsulated in RTP Data packets and added to the
outbound queue. Each entry in the queue is called a slot and along with the
RTP Data packet it has a counter and a timer associated with it. The counter
is used to count the number of times that this packet has been sent and the
timer is the elapsed time since it was last sent. There must be at least 16
slots available in the outbound queue.

There are two global values that are associated with outbound data, they
are; the current outbound sequence number, and the current retransmission
interval.

1.8.3.1 Enqueuing Outbound Data Packets

The queue is kept in order of sequence numbers and represents the
currently occupied portion of the sequence space. The queue is typically
implemented as a linked list of structures in memory. The head slot in the
queue is the oldest, that is, the lesser sequence number, and the tail is the
newest.

Before RTP enqueues an outbound packet, it must check that there is room
in the sequence space for that packet. This is easily accomplished by
comparing the sequence number of the head slot (the oldest
unacknowledged packet) plus 16 with the current outbound sequence
number. If the current outbound sequence number is less than the head
number plus 16, then the packet may be enqueued, otherwise, the outbound
queue is full and the application must wait.

New packets are assigned the current outbound sequence number and it is
then incremented. The new packet is placed in the tail slot of the queue, its
counter is set to 10, and its timer is initialized.

Refraction Technology, Inc. 24

Doc-RTPD-Protocol Rev A 05/20/08

1.8.3.2 Sending Outbound Data Packets

Packets are transmitted by examining the queue from head to tail and
sending the first packet that either has never been sent (counter equal to
10) or has an elapsed time since last sent greater than the retransmission
time-out. This insures that packets that need retransmission will get it in a
timely manner.

As each slot of the queue is examined, several checks are made. First, if the
counter on any packet is zero, there is a major problem with the connection
to the network and it should be dropped and reestablished. Second, if the
elapsed time since last sent is greater than the retransmit interval or the
counter is equal to 10, the packet is to be sent. After the packet is sent, its
counter is decremented, its timer restarted, and we repeat the procedure
starting at the head of the queue, not the next slot.

If we reach the tail of the queue, no packets are ready to be sent so we
simply repeat the procedure starting at the head slot again.

1.8.3.3 Dequeuing Outbound Data Packets

As DataAck packets are received, the outbound queue is examined for the
sequence number contained in the DataAck packet. If the corresponding
Data packet is in the outbound queue, it is dequeued. The elapsed time since
sent is the effective round-trip time to the server and may be used to
implement adaptive retransmission.

1.8.3.4 Adaptive Retransmission Time-out

Adaptive retransmit is a mechanism that keeps the retransmission interval
set to a realistic value so that RTP does not stall or retransmit unnecessarily.
The idea is to update the retransmission interval each time that a packet is
dequeued from the outbound queue using a running average over some
number of packets plus some time for overhead.

This is very helpful on connections with long round trip times. If the
retransmission interval is too long, when a Data or DataAck packet is lost,
RTP will send all packets in the outbound queue and then stall waiting for
the missing DataAck to arrive before retransmitting the Data packet again.
Conversely, if the interval is too short, it will retransmit Data packets before
the DataAck can make the trip back and squander the bandwidth available
on the connection.

Adaptive retransmit helps by insuring that Data packets needing
retransmission are sent again quickly and insures that there are no more
packets in the outbound queue at any given time than are absolutely
necessary.

Refraction Technology, Inc. 25

RTPD Protocols

The following C language function will compute the retransmission interval
based on the round trip time measured for the last packet transferred:

typedef signed long INT32; /* 32 bit signed */
typedef unsigned long UINT32; /* 32 bit unsigned */

#define RETRANS MAX (10 * SECOND_MS)
#define RETRANS MIN (500 * MSECOND MS)
#define RETRANS C 4
#define RETRANS M 2

UINT32 ComputeRetransInterval (UINT32 round trip, UINT32 *retrans interval)

{

INT32 a, t, c;

/* Compute average interval over last C packets by recursive
Iof g b Yy
approximation. The result is the minimum plus M times the
average constrained to less than the maximum.

round trip = round trip time measured for last packet in ms.
retrans_interval = pointer to the current retransmission interval in ms.

return value = value of new retransmission interval.
*/
t = (INT32)RETRANS_MIN + ((INT32)round_trip * (INT32)RETRANS_M);
a = (INT32) *retrans interval;
c = (INT32)RETRANS_C;
a=(a+ ((£t-a) / c));

if (a > RETRANS MAX)
a = RETRANS MAX;

*retrans_ interval = (UINT32)a;

return (*retrans interval) ;

}

If an error occurs and RTP retransmits a Data packet, it cannot be sure if
the DataAck that it receives is for the last or the first packet sent. This
means that measures must be taken to ensure that the retransmission
interval is not allowed to decrease without limit. The code above will not
allow it to decrease to less than 500 ms. However, a sudden change in the
condition of the connection can still cause problems.

A simple solution is to check the counter on Data packets before they are
dequeued. If the packet has been transmitted more than three times, it is
likely that the interval needs to be increased. Rather than recompute the
interval, it should be doubled and then constrained to be less than the
maximum value (10 seconds).

Refraction Technology, Inc. 26

Doc-RTPD-Protocol Rev A 05/20/08

The following C language function will increase the retransmission interval as
described.

UINT32 IncreaseRetransInterval (UINT32 *retrans interval)

{

/* Double the retransmission interval */
*retrans interval *= 2;

if (*retrans_interval > RETRANS MAX)
*retrans_interval = RETRANS MAX;

return(*retrans interval);

1.8.4 RTP Inbound Processing

As Data packets are received from the network, they are inserted into the
inbound queue. This queue is maintained in order of packet sequence
number. As with the outbound queue, the head slot contains the packet with
the lesser sequence number.

If the head slot of the queue contains the packet with the inbound sequence
number, it is dequeued and forwarded to the application. The inbound
sequence number is then incremented. This is the mechanism whereby
packets are re-ordered before being sent to the application.

There is only one global variable associated with the inbound queue, the
current inbound sequence number.

Refraction Technology, Inc. 27

RTPD Protocols

1.8.4.1 Enqueuing Inbound Data Packets

As stated above, the inbound queue is maintained in ascending order of
sequence number. Before an inbound Data packet is enqueued, its sequence
number is checked as follows:

Is it less than the current inbound sequence number? If so, the packet is old
and indicates that the previous DataAck did not make it back to the peer. A
DataAck is generated for this new packet and the packet is discarded.

Is it greater than or equal to the current inbound sequence number plus 16?
If so the packet is in error and is simply discarded without
acknowledgement. The sender has made the error and should retransmit the
packet again later.

If the above two tests are false, this packet falls with the sequence space.
The packet must now be inserted into the queue in its proper place. If a
packet with this sequence number is already in the queue, then this new
packet is a duplicate and is discarded.

1.8.4.2 Dequeuing Inbound Data Packets

RTP is always waiting for the Data packet with the inbound sequence
number to arrive. This packet is sent to the application and the inbound
sequence number is incremented.

Because the inbound queue is maintained in order, the packet of interest will
always be in the head slot of the queue. If this packets sequence number is
equal to the inbound sequence number, it is sent to the application, the
packet is dequeued, and the inbound sequence number is incremented.

Refraction Technology, Inc. 28

Doc-RTPD-Protocol Rev A 05/20/08

1.9 RTP Server Discovery Through Cisco Routers

As stated in the section above on Server Discovery, if the server and the
client are on different networks, the router must be instructed to forward
UDP packets destined for the well-know Ref Tek port to the servers network.

The following is the configuration of the Cisco 2509 router shown in figure 1.

version 11.3
no service password-encryption
|
hostname RefTek
|
username das#7377 password 0 das#7377
username das#7378 password 0 das#7378
|
chat-script reset-USRcourier-v34 “” “at&fl&d2s0=1" “OK”
chat-script dial-USRcourier-v34 “” “atdt\T” TIMEOUT 60 CONNECT \c
|
interface Etherneto
description Interface to 192.168.1.0 network
ip address 192.168.1.1 255.255.255.0
|
interface Serial0
no ip address
shutdown
|
interface Seriall
no ip address
shutdown
|
interface Asyncl
description DDR connection to RT422 in DAS 7377
ip address 192.168.2.1 255.255.255.0
ip helper-address 192.168.1.255
encapsulation ppp
dialer in-band
dialer wait-for-carrier-time 60
dialer string 3530611
dialer-group 1
async mode interactive
peer default ip address 192.168.2.2
no cdp enable
ppp authentication pap callin
|
interface Async2
description Direct connect to RT422 in DAS 7378
ip address 192.168.2.1 255.255.255.0
ip helper-address 192.168.1.255
encapsulation ppp
async mode interactive
peer default ip address 192.168.2.3
no cdp enable
ppp authentication pap callin
|
ip http server
ip classless

Refraction Technology, Inc. 29

RTPD Protocols

ip forward-protocol udp 2543

ip route 192.168.1.0 255.255.255.0 EthernetO
ip route 192.168.2.2 255.255.255.255 Asyncl
ip route 192.168.2.3 255.255.255.255 Async2
access-1list 101 permit ip any any
access-1list 101 deny igrp any host 255.255.255.255
dialer-1list 1 protocol ip list 101

|

line con 0

line 1

autoselect ppp

script dialer dial-USRcourier-v34

script reset reset-USRcourier-v34

login local

modem InOut

transport input all

speed 115200

flowcontrol hardware

line 2 8

autoselect ppp

modem InOut

flowcontrol hardware

line aux 0

line vty 0 4

exec-timeout 0 0

password reftek

login

|
end

This configuration provides for a DAS with an RT422 to be connected directly
to the Async2 interface as well as a Dial-on-demand routing (DDR)
connection through a modem on the Asyncl interface.

The UDP broadcasts are handled by the global statement ip forward-protocol
udp 2543, and the Async interface statements ip helper address
192.168.1.255. These statements cause the router to forward UDP
broadcasts received on those interfaces to the subnet directed broadcast
address of the 192.168.1.0 network where the server will see them.

Refraction Technology, Inc. 30

455 B2
fi = o

REF TEK Refraction Technology

2 RTPD Client Protocol

2.1 RTPD/Client Connection Overview

The RTPD to client connection is created using a TCP socket and the RTP
protocol. RTPD is the server and the client initiates the connection. The rtp
library encapsulates much of the message handling required to establish a
connection and to send and receive messages. The library also handles any
of the data conversion required to ensure the message is transmitted in
network byte order. This document gives the minimum amount of
information necessary to create a client program. The programmer is
encouraged to examine and use the rtp library functions when writing their
application.

2.2 Client Connection to RTPD

A client program connects to an RTPD server by sending messages to the
server’'s IP address using the port humber defined in the server’s RTPD.ini
file (value of the Port field). The default port humber is 2543. The client
connection must use the IP address of the first interface card address for the
workstation where the server is running.

The structure of the RTP message packets is shown in the table below.

Offset ‘ Description ‘ No. of Bytes Type and Range
0 Type of message 2 Binary integer 0 — 11 (see table 2).
2 Length of payload 4 Binary integer. Zero if payload is absent.
4 Payload nnnn Message Body. nnnn = size in bytes.

The message types are defined in the file <src/include/rtp.h> as show in
Table 2. The length of the payload is used to know the size of the payload
being transmitted. This length can increase if more data is transmitted in
future releases of rtpd or client programs. Therefore, it must be used to
ensure messages stay in sync. When establishing a connection to RTPD ,
there is a protocol version which is passed as the first message. It is used to
verify that the handshake protocol, or the number and sequence of
messages used to establish a connection, is the same between the client and
the RTPD server.

Refraction Technology

RTPD Protocols

Value | Type Name Description
0 RTP_MSG_REFTEK A Reftek (ie, from DAS) packet
1 RTP_MSG_CMDPKT An RTP command packet
2 RTP_MSG_NOP Heartbeat message
3 RTP_MSG_ATTR Connection attribute message
4 RTP_MSG_SOH State of health request/reply
5 RTP_MSG_START Start forwarding packets
6 RTP_MSG_STOP Stop forwarding packets
7 RTP_MSG_FLUSH Flush buffered but undelivered packets
8 RTP_MSG_BREAK Break connection
9 RTP_MSG_BUSY Server busy message
10 RTP_MSG_FAULT Server fault
11 RTP_MSG_PID Peer PID message

2.3 Opening a Connection

A client establishes a connection by opening a socket to the server and
exchanging a specific sequence of messages. This process has been
encapsulated by the rtp_open() function. rtp_open() opens the socket and
calls the handshake() function to send these first few messages. These
functions are located in the module <src/lib/rtp/accept.c>.

The handshake procedure includes three steps: identifying the RTP protocol
version used, trading process IDs (PIDs) and establishing the connection
attributes.

1. The client sends an empty message (6 bytes in length for the header) using the
Client Protocol version number as the message type. RTPD responds with a
similar message where the message type is set to the protocol version supported
by current RTPD implementation.

Note: The current implementation of RTPD only accepts protocol version 1.

2. The client sends a PID message (RTP_MSG_PID) containing its PID number and
client name. RTPD responds with its own PID message containing its PID number
and name. The id and name are put in the RTPD log when the connection is
complete. The PID message is defined in the table below.

Element Type Description
PID UINT32 Process ID

client_name | 32 CHAR | Name of program

3. The client sends an ATTRIBUTE message (RTP_MSG_ATTR) containing its
connection attributes. RTPD responds with an attribute message that may contain
changes. The client must use the modified attributes. The connection attributes
message is defined in following table.

The connection is open if these three steps finish successfully.

Refraction Technology, Inc. 32

Doc-RTPD-Protocol Rev A 05/20/08

Element ‘ Type Description

at_dasid UINT32 | DAS "mask"

at_pmask | UINT32 | Packet mask

at_smask | UINT32 | Stream mask

at_timeo INT32 I/0 timeout interval (for RTPD i/0)

at_block INT32 Application level block/noblock flag. This element is defined in
structure rtp attr to be of BOOL type. A value of this variable
transmits as 1/0 that corresponds to TRUE/FALSE.

at_sndbuf | INT32 TCP/IP transmit buffer size

at_rcvbuf | INT32 TCP/IP receive buffer size

flag INT32 Bit 0 is clients command privilege 1-allowed 0-not allowed

A structure is defined in <src/include/rtp.h> The names above match the
members of the structure rtp_attr. However, the sequence of elements does
not correspond identically to their order in the structure.

Connection for a typical client connection might look as follows:

static CHAR Host = "localhost"; /*or dot delimited server address*/
static UINT16 Port = RTP_ DEFAULT PORT;
static UINT16 Retry = RTP_ERR NONFATAL;

RTP *rtp = (RTP *) NULL;
void main(int argc, char *argv[])
struct rtp attr attr = RTP_DEFAULT ATTR;
attr.at_block = FALSE;
attr.at pmask = RTP_PMASK ALL;
strncpy (client name,argv[0] ,RTP_CLIENT NAME LEN);/*for PID msg*/
if ((rtp = rtp open(Host, Port, &attr, Retry)) == (RTP *) NULL)
perror ("rtp open") ;
exit (1) ;

}

}

It should be noted that the rtp_open uses the variable client_name to fill in
the program name in the RTP_MSG_PID. If this is not done the name "“Client
Name not set” will be used.

Refraction Technology, Inc. 33

RTPD Protocols

2.3.1 Receiving Messages

When receiving messages from the server, the message header is received
first, and then the message payload is received next based on the size
declared in the message header. Therefore, per Table 1, 6 bytes are
received, and then a variable number of bytes will be received. The process
is encapsulated in the function rtp_recv(). Messages returned from the DAS
are placed in messages of type. RTP_MSG_REFTEK. The payload of this
message is usually a DAS data packet or command response. The data
packet is defined by the 130 recording document, RECORDING FORMAT
SPECIFICATIONS For REFTEK 130 Data Acquisition Systems. The command
response is defined in the 130 command document, COMMAND FORMAT
SPECIFICATIONS For REFTEK 130 Data Acquisition Systems.

The library function rtp_daspkt() provides an example of using the
rtp_recv() function.

BOOL rtp_daspkt (

RTP *rtp,

UINT8 *buf, /* payload will be put in this buffer */
INT32 *datlen) /* length of payload will be set */

{

UINT1l6 type;

static CHAR *fid = "rtp daspkt";
if (rtp == (RTP *) NULL || buf == (UINT8 *) NULL)
{
rtp log(RTP_ERR, "%s: null input(s)!", £id);

errno = EINVAL;
return FALSE;

}

while (1)

{

/* Get the next message from the server */
if (!rtp recv(rtp, buf, &type, datlen))

{

rtp log(RTP_DEBUG, "%s: rtp recv failed", fid);
return FALSE;

}

/* Deal with it */
if (type == RTP_MSG REFTEK) /*command response or data packet from

{
}

else if (type == RTP_MSG NOP && !rtp->attr.at block)

{

DAS*/

return TRUE;

rtp log(RTP_DEBUG, "HEARTBEAT received") ;
*datlen = O;
return TRUE;

Refraction Technology, Inc. 34

Doc-RTPD-Protocol Rev A 05/20/08

else if (type == RTP_MSG FAULT)

{

rtp_ log(RTP_ERR, "server fault!");
errno = ECONNABORTED;
rtp->rcv.error = RTP_ERR FATAL;
return FALSE;

2.3.2 Sending Command Packets

The DAS command packets are described in the 130 command document,
COMMAND FORMAT SPECIFICATIONS For REFTEK 130 Data Acquisition
Systems. The DAS packet is the data part of the RTP_MSG_CMDPKT
described in Table 5.

The unit id and command length are added so that RTPD can easily extract
them and use them to forward to the DAS.

Element ‘ Type Description

Unit UINT16 Unit ID

Len UINT16 Command Packet length

Data 1K max DAS command packet as described in 130 document

The application only needs to format the DAS command packet and call
rtp_cmdpkt_send() to send the packet. This function will handle creating
the RTP message, encoding the extra data in network byte order before
sending it to the RTPD server. Here is an example of sending a command
packet. Note that it uses the structure RTP_CMDPKT to setup the data to be
formatted and sent.

VOID Cmd_ 130 (RTP *rtp,
UINT16 uid, /* DAS unit id */
char *message) /* command packet to send/

{

static char *fid = "Cmd_130";
UINT16 len;

UINT16 crc;

char *p;
RTP_CMDPKT cmdpkt ;

BOOL first = TRUE;

/* check for valid message */
if (rtp == (RTP *)NULL)

{

fprintf (stderr, "command discarded: NULL RTPD handle!\n") ;
return;

}

Refraction Technology, Inc. 35

RTPD Protocols

if (uid && (uid < 0x9000))

{

fprintf (stderr, "command discarded:

return;

}

len = strlen((CHAR *)message) ;
if (len > (256 - 16))

{

fprintf (stderr, "command discarded:

return;

}

if (len == 0)

{

fprintf (stderr, "command discarded:

return;

p = cmdpkt.data;
*p++ = RT130_CMND;
*P++ = 0;

invalid UID (%04X) !\n", uid);

too long!\n") ;

zero length!\n");

sprintf (p, "%$04hX%04hu%s", uid, message) ;

len += 8; /* account for ID & length fields */
crc = Cmd_130_crc(p, len);

len += 2; /* account for ATTN & rsvd fields */
sprintf (&cmdpkt.data[len], "%04X\r\n", crc);

len += 6; /* account for CRC & delimiters */

cmdpkt.unit = uid;
cmdpkt.len = len;
rtp_cmdpkt send(rtp, &cmdpkt) ;

} /% end of Cmd_130() */

2.3.3 Connection Session

During a connection session, RTPD sends a HEARTBEAT
(RTP_MSG_NOP) once a second if no messages were sent to the client
during the past second. The REFTEK messages could be DAS recording

packets or DAS responses to client commands.
RTPD function ClientThread() located

message

This is performed by the

<src/bin/rtpd/client.c>. The
HEARTBEAT message currently has a zero length payload.

Refraction Technology, Inc.

36

Doc-RTPD-Protocol Rev A 05/20/08

2.4 Closing A Connection

The client closes an open connection by sending a BREAK message
(RTP_MSG_BREAK) to the server and closing the socket. The BREAK
message is sent using the rtp_break() macro located in <src/include/rtp.h>.
The socket is <closed by the function rtp_close() located in
<src/lib/rtp/close.c>. The BREAK message currently has a zero length
payload. Example code follows:

VOID graceful_exit(RTP *rtp, UINT16 status)
{

rtp log (IDLOG_ERR, "shutdown");
rtp break(rtp) ;

rtp close(rtp);

exit ((int) status) ;

} /* end graceful exit () */

Refraction Technology, Inc. 37

RTPD Protocols

2.5 Other Message Payloads
The following messages currently have a zero length payload:

RTP_MSG FAULT- logged by RTPD only

RTP_MSG BUSY - logged by RTPD only

RTP_MSG BREAK - RTPD returns break & closes connection
RTP_MSG_START - restarts transmission of data packets
RTP_MSG_STOP - stops transmission of data packets

RTP_MSG _SOH - 1logged by RTPD only

RTP_MSG NOP - logged by RTPD only

RTP_MSG FLUSH - RTPD flushes pending data packets to client

Refraction Technology, Inc. 38

Doc-RTPD-Protocol Rev A 05/20/08

2.6 RTP Log

The rtp library also has a logging function built into it. It is suggested that
the programmer use this facility to provide common functionality amongst
clients.

The logging facility is initialized as follows:

static CHAR *Logfn = "rtpid.log";
rtp loginit (Logfn, 0, NULL, "rtpid");

Then messages are logged as follows:
rtp_ log(RTP_INFO, "%s", Version) ;

The first parameter is the message type and can be replaced by one of the
following:

RTP_LOG_ECHO
RTP_ERR
RTP_WARN
RTP_INFO
RTP_DEBUG

ECHO can be used to always display information to the screen. The other
three types allow the user to control the amount of information put in the
log file. This is controlled by a logging threshold that is set by calling
rtp_loglevel(newlevel). If the newlevel is set to RTP_ERR, only RTP_ERR
messages are logged. If RTP_WARN, RTP_ERR and RTP_WARN are
displayed. The default level is RTP_INFO.

LOG LEVEL MESSAGE TYPES LOGGED

RTP_ERR RTP_ERR

RTP_WARN RTP_ERR & RTP_WARN

RTP_INFO RTP_ERR,RTP_WARN & RTP_INFO

RTP_DEBUG | RTP_ERR, RTP_WARN,RTP_INFO & RTP_DEBUG

Control of the logging level is often programmed to be selectable. Sample
code follows:

if (strcasecmp(argv([i], "-v") == 0)

{

rtp loglevel (RTP_DEBUG) ;

Refraction Technology, Inc. 39

